人教版八年級(jí)數(shù)學(xué)下冊(cè)教案第18章 平行四邊形2 平行四邊形的判定_第1頁(yè)
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案第18章 平行四邊形2 平行四邊形的判定_第2頁(yè)
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案第18章 平行四邊形2 平行四邊形的判定_第3頁(yè)
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案第18章 平行四邊形2 平行四邊形的判定_第4頁(yè)
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案第18章 平行四邊形2 平行四邊形的判定_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、18.118.1.2第 1 課時(shí)平行四邊形平四形判 平四形判教學(xué)目一、基本目標(biāo)【知識(shí)與技能】理解平行四邊形的判定定會(huì)證明這些判定定理【過程與方法】經(jīng)歷平行四邊形的判定定理的探索過,在探究活動(dòng)中發(fā)展學(xué)生的合情推意識(shí) 【情感態(tài)度與價(jià)值觀】在運(yùn)用平行四邊形的判定定理解決問題的過程中 進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能 力和推理論證的幾何表達(dá)能力二、重難點(diǎn)目標(biāo)【教學(xué)重點(diǎn)】平行四邊形的判定定理【教學(xué)難點(diǎn)】利用平行四邊形的判定定理解決相關(guān)問題教學(xué)過環(huán)節(jié) 自提,成問題【5 min 閱讀】讀教材 P47 的內(nèi)容完成下面練習(xí)【3 min 反饋】平行四邊形的判定定理:(1)兩組對(duì)邊分別相等的四邊形是行四邊形(2)兩

2、組對(duì)角分別相等的四邊形是行四邊形(3)對(duì)角線相互平分的四邊形是平四邊形(4)一組對(duì)邊平行相等的四邊形平行四邊形如圖在下列四個(gè)選項(xiàng)能判定四邊形 是行邊形的( D )AABCD CAB BCBAB ,B DABDC如圖已知 ABCD添加一個(gè)條件 (案不唯一)使得四邊形 為行四邊形已知E、 是行四邊形 ABCD 對(duì)線 AC 的兩,且 求證:四邊形 BFDE 是行四邊形證明:四邊形 是平行四邊形, 且 ,EADFCBCF,在 和CFB ,EADFCBADBC,AEDCFB(SAS),BF.同理可證DF,四邊形 是行四邊形環(huán)節(jié) 合作究,決問題活動(dòng) 小組論(師生對(duì)學(xué)【例 】圖、 是邊形 對(duì)角線 的兩DFB

3、EDFBE四 邊形 ABCD 是行四邊形嗎?請(qǐng)說明理由【互動(dòng)探索引發(fā)學(xué)生思)證明AFDCEB, 根據(jù)“組對(duì)邊平行且相等的四邊形是平行四邊”可證出結(jié)論【解答】邊形 是平行邊形理由如下:DF,又DFBE,CB,DAFBCE,CB,四邊形 是行四邊形【互動(dòng)總結(jié)(學(xué)生總結(jié)老師點(diǎn))題主要考查了平行四邊形的判定以及三角形全等的判定與性質(zhì),題的關(guān)鍵是根據(jù)條件證出AFD【例 】圖AB、CD 交于點(diǎn) ,ACAOEF 分是 OD 中點(diǎn)求證 (1)BOD;(2)四邊形 AFBE 是平行四邊形【互動(dòng)探索】(引發(fā)學(xué)生思考)利用已知條件和全等三角形的判定方法即可證明AOC BOD(2)題已知 BO要證四邊形 AFBE 是

4、平行四邊利用全等三角形的性, 需證 OE.【證明】(1)ACBDC,在 和BOD D,AOBO,BOD(AAS)(2),CODO、F 分是 OC、OD 的點(diǎn) OE ,OF OD EO又AO四邊形 是行四邊形【互動(dòng)總結(jié)(學(xué)生總結(jié)老師點(diǎn))應(yīng)用判定定理判定平行四邊形時(shí)應(yīng)仔細(xì)觀察題目所 給的條件仔細(xì)選擇適合于題目的判定方法進(jìn)行解,免混用判定方法掌平行四邊形 的判定定理是解決問題的關(guān)鍵活動(dòng) 鞏固習(xí)(學(xué)生獨(dú)學(xué)如圖點(diǎn) 、F 是 對(duì)線上兩,條件:;ADE; CE; AEB 中,使四邊形 DEBF 是行四邊可加的條件是( D )ABCD如圖AO ,16 則當(dāng) 時(shí)四形 ABCD 是行四邊形如圖所示在四邊形 ABC

5、D 中CB且 動(dòng)點(diǎn) P、 分從 A、C 同時(shí)出發(fā), 以 1 cm 的度由 A 向 運(yùn),Q 以 的度由 C 向 B 運(yùn), 2 秒后,邊 形 ABQP 平行四邊形如圖四邊形 中ADBCAEAD 交 BD 于 E 交 BD 于點(diǎn) 且 CF求:四邊形 ABCD 是行四邊形證明:AECFBC EAD BC, 在 eq oac(,Rt)AED 和 eq oac(,Rt) ADE,EADFCB,CF, eq oac(,Rt) eq oac(,Rt)CFBBC.又 AD四邊形 是行四邊形活動(dòng) 拓展伸(學(xué)生對(duì)學(xué)【例 】如圖在直角梯形 ABCD 中ADBCB90,CD 交 BC 于 G點(diǎn) F 別為 AG、 的中連

6、結(jié) 、.(1)求證:四邊形 DEGF 是行四邊形;(2)如果點(diǎn) 是 BC 中點(diǎn)且 BC10,求邊形 的面積【互動(dòng)探索】(1)證明四邊形 AGCD 是行四邊形,出 CDAG推出 DF根據(jù)平行四邊形的判定推出即可由點(diǎn) G 是 BC 的點(diǎn),得 CG 根據(jù)四邊形 是行四邊形可知 AG,據(jù)勾股定理求出 AB 的長(zhǎng),進(jìn)而求出四邊形 AGCD 的面 積【解答】(1)證明:DCADBC四邊形 平行四邊形,AG、F 分為 AGDC 中點(diǎn), EG AGDF DC, 2EG.又EGDF四邊形 DEGF 是平行四邊形(2)點(diǎn) 是 BC 的點(diǎn)12,BG BC6.四邊形 平行四邊形,10,AG10.在 eq oac(,R

7、t)ABG 中根勾股定理得 AB四邊形 面積為 648.【互動(dòng)總結(jié)學(xué)生總結(jié)老點(diǎn)評(píng))本題考查了平行四邊形的判定和,股定理平行四 邊形的面積,握定理是解題的關(guān)鍵環(huán)節(jié) 課堂結(jié),堂達(dá)標(biāo)(學(xué)生總結(jié)老師點(diǎn)評(píng))平行四邊形的判定定理:(1)兩組對(duì)邊分別相等的四邊形是行四邊形(2)兩組對(duì)角分別相等的四邊形是行四邊形(3)對(duì)角線相互平分的四邊形是平四邊形(4)一組對(duì)邊平行且相等的四邊形平行四邊形練習(xí)設(shè)請(qǐng)完成本課時(shí)對(duì)應(yīng)練習(xí)!第 課 三形中線教學(xué)目一、基本目標(biāo)【知識(shí)與技能】理解并掌握三角形的中位線的定義及其性質(zhì)定理能夠利用三角形的中位線定理解決有關(guān)的問題【過程與方法】經(jīng)歷探索三角形中位線性質(zhì)定理的證明過體會(huì)轉(zhuǎn)化的思想

8、方進(jìn)一步發(fā)展學(xué)生操作 觀察、歸納、推理的能力【情感態(tài)度與價(jià)值觀】培養(yǎng)合情推理能體會(huì)在證明過程中所用的歸納比化等思想方,發(fā)學(xué)習(xí)熱 情二、重難點(diǎn)目標(biāo)【教學(xué)重點(diǎn)】三角形中位線的性質(zhì)定理【教學(xué)難點(diǎn)】利用三角形中位線的性質(zhì)定理解決相關(guān)問題教學(xué)過程環(huán)節(jié) 自提,成問題【5 min 閱讀】讀教材 P49 的內(nèi)容完成下面練習(xí)【3 min 反饋】連結(jié)三角形兩中的線段叫做三角形的中位線三角形的中位線定理:三角形的中位線 行于角形的第三邊,并且等于第三邊的一 半如圖點(diǎn) D、E 分為 ABAC 的點(diǎn),證 且 證明:如圖,長(zhǎng) 到 使 ,結(jié) 由題易知 eq oac(,)CFE且 FC.D 是 AB 的點(diǎn),FC,四邊形 BC

9、FD 是行四邊形,DF.又DEEFDEBC 且 DE BC教師點(diǎn)撥:此方法是證明三角形位線定理的另一種方法環(huán)節(jié) 合作究,決問題活動(dòng) 小組討論(師生互學(xué))【例 】圖為量池塘邊上兩點(diǎn) 、 之的距,明在池塘的一側(cè)選取一點(diǎn) O取 OA、 中點(diǎn) D、,出 12 米那么 、B 兩之的距離是 米【互動(dòng)探索】引發(fā)學(xué)生思考先判斷三角形的中位,利用三角形中位線定理可得到 2DE,可求得答案【分析】DE 分別為 OA、OB 的點(diǎn), 的位線,AB224 即 AB 兩點(diǎn)之間的距離是 米【答案】24【互動(dòng)總結(jié)(學(xué)生總結(jié)老師點(diǎn))題主要考查三角形中位線定,掌握三角形中位線平 行第三邊且等于第三邊的一半是解題的關(guān)鍵【例 】如圖

10、在 中,ABAC點(diǎn) 為 的中AM 平BACCMAM垂 足為點(diǎn) M延長(zhǎng) CM 交 于 求 MN 的長(zhǎng)【互動(dòng)探索】(引發(fā)學(xué)生思考為證 MN 為 的中位線,根據(jù)三線合一得 MC即解決問題【解答】AM 平BAC,CMAMAC3,DMCMAB5,AB2. 為 BC 中點(diǎn),MN 為 的中位線 BD 【互動(dòng)總結(jié)(學(xué)生總結(jié)老師點(diǎn))已知三角形的一邊的中點(diǎn),注意分析問題中是否 有隱含的中點(diǎn)如已知一個(gè)三角形一邊上的高又是這邊所對(duì)角的平分線,據(jù)三線合” 可知,這實(shí)際上是又告訴了我們一個(gè)中點(diǎn)活動(dòng) 鞏固習(xí)(學(xué)生獨(dú)學(xué)如圖, 中D 分為 ACBC 中點(diǎn), 平CAB交 DE 于 F.若 DF 則 AC 的為 )ACBD如圖、

11、分為 、 的點(diǎn)E30,1110,2 的度數(shù)( A )AC100B90D110如圖所示 ABCD 的角線 、 相于點(diǎn) 點(diǎn) E、 分別是線段 、BO 的點(diǎn),若 ACBD 厘米 eq oac(,)OAB 的長(zhǎng)是 18 厘米, 3 厘如圖所示, 是 內(nèi)點(diǎn)BDCD,AD6,BDCDEF、H 分是 、 、BD 的點(diǎn)則四邊形 EFGH 的長(zhǎng)為 如圖所示在 中AC點(diǎn) D 在 BC 上,且 ,ACB 的分線 CF 交 AD 于點(diǎn) , E 是 AB 的中點(diǎn)連結(jié) 求證:證明:CF 平ACBDC,CF 是ACD 的線點(diǎn) F 是 AD 的點(diǎn)點(diǎn) 是 的點(diǎn)EFBD,即 EFBC活動(dòng) 拓展伸(學(xué)生對(duì)學(xué)【例 】如圖 為平行四邊形 ABCD 中 DC 邊的延長(zhǎng)線上一且 ,連結(jié) AE,分別 交 BCBD 于 F、G連結(jié) 交 BD O連結(jié) OF,斷 AB 與 OF 的位置關(guān)系和大小關(guān), 并證明你的結(jié)論【互動(dòng)探索可證 eq oac(,明)ECF從而得出 BFCF這樣就得出了 OF 是 的中位線從而利用中位線定理即可得出線段 OF 與段 AB 關(guān)系【解答】ABOF 且 AB.明如下:四邊形 是行四邊AB CDOA,BAFECF.DC, CDAB.CEF在 和ECF 中,C

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論