放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室課件_第1頁(yè)
放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室課件_第2頁(yè)
放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室課件_第3頁(yè)
放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室課件_第4頁(yè)
放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室課件_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、吳育德陽(yáng)明大學(xué)放射醫(yī)學(xué)科學(xué)研究所臺(tái)北榮總整合性腦功能研究室Introduction To Linear Discriminant Analysis吳育德Introduction To Linear Disc Linear Discriminant Analysis For a given training sample set, determine a set of optimal projection axes such that the set of projective feature vectors of the training samples has the maximum bet

2、ween-class scatter and minimum within-class scatter simultaneously. Linear Discr Linear Discriminant Analysis Linear Discriminant Analysis seeks a projection that best separate the data .Sb : between-class scatter matrixSw : within-class scatter matrix LinSol:LDA Fisher discriminant analysisSol:LDA

3、where , = k1+k2and let LDA Fisher discriminant analysiswhereLDA LDA Fisher discriminant analysisLDA Let M be a real symmetric matrix with largest eigenvalue thenand the maximum occurs when , i.e. the unit eigenvector associated with .Proof : LDA Generalized eigenvalue problem.Theorem 2Let M be a rea

4、l symmetric matrLDA Generalized eigenvalue of of Theorem 2LDA If M is a real symmetric matrix with largest eigenvalue .And the maximum is achieved whenever ,where is the unit eigenvector associated with .Cor: LDA Generalized eigenvalue of of Theorem 2If M is a real symmetric ma

5、triLDA Generalized eigenvalue problem. Theorem 1Let Sw and Sb be n*n real symmetric matrices . If Sw is positive definite, then there exists an n*n matrix V which achieves The real numbers 1.n satisfy the generalized eiegenvalue equation : : generalized eigenvector : generalized eigenvalueLDA Genera

6、lized eigenvalue of of Theorem 1Let and be the unit eigenvectors and eigenvalues of Sw, i.eNow define then where Since ri 0 (Sw is positive definite) , exist LDA Generalized eigenvalue problemLDA Generalized eigenvalue of of Theorem 1LDA LDA We need to claim : (applying a unita

7、ry matrix to a whitening process doesnt affect it!) (VT)-1 exists since det(VTSwV) = det (I ) det(VT) det(Sw) det(V) = det(I) Because det(VT)= det(V) det(VT)2 det(Sw) = 1 0 det(VT) 0Generalized eigenvalue of of Theorem 1LDA Procedure for diagonalizing Sw (real symmetric and positive definite) and Sb (real symmetric) simultaneously is as follows :1. Find i by solving And then find nor

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論