




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
十一、電子能譜
(ElectronSpectroscopyforSurface
Analysis)近代分析實(shí)驗(yàn)原理(Introductionofmodernanalyticalmethods)121.BasicPrinciplesElectronSpectroscopyelementalanalysisEmitcharacteristicelectronsPhotoelectronsAugerelectronsAugerelectronspectroscopy(AES)X-rayphotoelectronspectroscopy(XPS)surfacechemicalanalysis(generally20–2000eV)(adepthof10nmorless)3Emissionprocessesofcharacteristicelectrons:(a)a1sphotoelectron;and(b)aKL1L2,3Augerelectron41.1X-rayPhotoelectronSpectroscopyTheX-rayphotoelectronisanelectronejectedfromanelectronshellofanatomwhentheatomabsorbsanX-rayphoton.thebindingenergyoftheatom’sphotoelectron(EB):aphotoelectronwithkineticenergyEKtheenergyrequiredforanelectrontoescapefromamaterial’ssurfacecharacteristicvaluesidentifieschemicalelementsthebindingenergyIncidentX-rayphoton5XPSspectrumofanoxidizedaluminumsurface.peaksfromAugerelectronselementsymbolplusashellsymbol6Thephotoelectronsemittedbysubshellsp,dandfarecommonlymarkedwithanadditionalfractionnumberJ,71.2AugerElectronSpectroscopyAugerelectronswerenamedafterPierreAugerwho,togetherwithLiseMeitner,discoveredAugerelectronemissionin1920s.anincidentelectronknocksoutaKshellelectron,aL1shellelectronrefillstheKshellvacancy,andaL2,3shellelectronisejectedastheAugerelectron.thebindingenergyofelectronshell-Φ8AESspectraofanoxidizedaluminumsurface:(a)directspectrumofintensityversuskineticenergyofAugerelectrons;and(b)differentialspectrumofintensityversuskineticenergyofAugerelectrons.9SchematiccomparisonofAugerpeakintensitywithotherelectronsescapedfromasolidsurface.Eoindicatesenergyofincidentelectrons.ThekineticenergyofelectronscanbedividedintothreeregionsI,IIandIIIfromlowtohigh.TheprimaryelectronsejectedfromasolidsurfacebyinelasticscatteringcomprisethebackgroundofanAESspectrumintheregionofhighkineticenergieswhilethesecondaryelectronscomprisethebackgroundintheregionoflowkineticenergies.102.InstrumentationStructureofanelectronspectrometer(combiningXPSandAES)10?8–10?10mbarPreventthescatteringKeepthesurfacecleanstainlesssteelcrushedcoppergasketsanelectrongun,anX-raygunandasharedanalyzerofelectronenergy.magneticshielding112.1SourceGuns2.1.1X-rayGunNon-monochromaticX-rayradiationfromanX-raygunwithanAltarget.ThecharacteristicAlKαlineisatabout1.5keV.commonlyAlorMgLowerenergyX-raysnarrowlinewidthXPSrequiresalinewidthlessthan1.0eVtoensuregoodenergyresolution.BothAlKαandMgKαexhibitlinewidthslessthan1.0eVandalsohavesufficientenergies(>1000eV)forphotoelectronexcitation.usesbothnon-monochromaticandmonochromaticX-raysourcesAlKαandMgKα1.4866and1.2536keVCuKαandMoKα8.04keVand17.44keV12AnX-raygunwithtwo-anodes.Twotaperedanodefaces(oneisAlandtheotherisMg)havesemi-circularfilaments,whichareneargroundpotential.Anaccelerationvoltageofabout15kVbetweenafilamentandanodegeneratesX-raysthatexitthroughanAlwindow.switchingbetweenMgKαandAlKα,AlKαandMgKαare1.4866and1.2536keVlinewidthlessthan1.0eV132.1.2ElectronGunsimilartothoseusedinelectronmicroscopy(LaB6andfieldemissionguns)2.1.3IonGunThefunctionsofaniongunaretwofold.First,itprovidesahighenergyionfluxtocleansamplesurfacesbeforeexamination.Thesecondfunctionoftheiongunistosputteroutsampleatomslayerbylayersothatanelementaldepthprofilecanberevealed.(argonion)Energy:0.5to5.0keVfocusedtoadiameterdowntoseveraltensofmicrometers.scanasurfaceareaaslargeas10×10mm142.2ElectronEnergyAnalyzersWorkingprinciplesofaconcentrichemisphericalanalyzer.concentrichemisphericalanalyzer(CHA)(hemisphericalsectoranalyzer(HSA))NegativeTheCHAonlyallowstheelectronswithenergyE=eVo,whichareinjectedtangentiallytothemediansurface,topassthroughitschannelandreachthedetector.V0passenergy15constantanalyzerenergy(CAE)modeXPSconstantretardingratio(CRR)modeAESelectronretardationElectronenergyreductionCHAXPSrequireshighabsoluteresolutionofabout0.5eVinthewholerangeofaspectrum.CHAhasarelativeresolutionlimit.ForE=200eV,aCHArequiresarelativeresolutionof0.025tosatisfytheXPSabsoluteresolutionof0.5eV.However,forE=1500eV,aCHArequiresarelativeresolutionof0.003todoso,whichisnotpractical.lowCHApassenergy:10–100eVAugeranalysisrequiressuppressingtheelectronsignalatthelowenergyendofitsspectrum.CHA:LowtransmissionratewithlowpassenergyWhenaconstantretardationratioisapplied,alowAugerelectronenergygenerateslowCHApassenergy.163.CharacteristicsofElectronSpectra3.1PhotoelectronSpectraAnXPSspectrumofsilverexcitedMgKαwithpassenergyof100eV.thevalence-levelpeaktheAugerpeakscore-levelphotoelectronpeaksElementalanalysisPrimarilyusefulinstudiesoftheelectronicstructureofmaterials.Thevalence-levelpeaksarethoseatlowbindingenergy(0–20eV)17ExamplesofseveraltypesofsatellitepeaksinXPSspectra:(a)shake-uppeaksinaCuOspectrum;(b)shake-uppeaksandmultipletsplittinginaNiOspectrum;and(c)plasmonlosspeakinacleanAlspectrum.resultfrominteractionbetweenaphotoelectronandavalenceelectron.hasunpairedelectronsinitsvalencelevelexcitescollectivevibrationsinconductionelectronsinametalNousefulinformation183.2AugerElectronSpectraAugerspectraofacontaminatedtungstenfoilacquiredinafixedretardingratiomodewith0.6%relativeresolution:(a)directspectrum;and(b)differentialspectrum.ElementsP,N,O,W,Careindicated.thefirstderivativeofthecurvePeak
positionslightlydifferent.19ChartofprincipalAugerelectronenergiesofKLL,LMMandMNNlinesAlightelementisoftenidentifiedfromitsKLLAugerlines,whichdominateintheAugerspectrumrange.However,foranelementwithatomicnumberhigherthan15,eitherLMMorMNNAugerlinesaredominant.TheLMMlinesforanelementaredividedintothree,astriplets.TheLMMtripletfeatureresultsfromthedifferenceinsubshellsinvolvedintheAugerprocess.20PrincipalAugerKLLpeaksoflightelements,Be,B,C,N,O,FandNa.KL23L23isthemostvisibleKLLpeakforeachelement;forexample,OKL1L1(468eV),OKL1L23(483eV)andOKL23L23(503eV).21TripletpeaksofAugerspectraforCr,MnandFe.TheLMMtripletsoccurintransitionmetals.ThelowkineticenergypeaksareofL2,3VVwhereVrepresentsthelevelofvalenceelectrons.224QualitativeandQuantitativeAnalysisChemicalanalysisidentifychemicalelementschemicalstatusthespatialdistributionsofelements4.1QualitativeAnalysis23PeakIdentificationThepeaksinanAESspectrumcanbeidentifiedbycomparingtheexperimentalpeakswithstandardpeaksfoundinreferencebooksorcomputerdatabases.PeakidentificationsinXPSspectra,however,aremorecomplicatedbecauseAugerpeaksmaybepresent.distinguishtheAugerpeaksfromphotoelectronpeaksAnAugerpeakwillshiftinapparentbindingenergyinanXPSspectrumwhenwechangetheX-raysource.Forexample,anAugerpeakshiftsby233eVintheXPSspectrumwhenwechangetheradiationfromMgKα(1253.6eV)toAlKα(1486.6eV).CalibrationC1speakat284.8eVFixedPeakpositionsinanXPSspectrumarelikelytobeaffectedbyspectrometerconditionsandthesamplesurface.24ChemicalShiftsChemicalshiftsofbindingenergypeaksforanelementarecausedbythesurroundingchemicalstateoftheelement.XPSspectrumofpoly(vinyltrifluoroacetate):(a)C1s;and(b)O1swithmonochromaticAlKαexcitation.聚(乙烯基三氟乙酸)carefullyresolvetheoverlappedpeakswithassistanceofcomputersoftware.25ChartofcarbonchemicalshiftinXPSspectra.Thelargerthenumberofelectronstransferred,thehigherthechemicalshift.26ComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.ChemicalshiftsalsooccurinAESspectra,andthechemicalshiftscanbesignificantlylargerthantheshiftsinXPS.Forexample,theshiftbetweenmetallicandoxideAlpeaksofAlKL2L3ismorethan5eVwhilethecorrespondingshiftofAl2pbindingenergyisonlyabout1eVComparisonofpositionsandshapesofOKLLAugerpeaksinseveralsolidoxides.27InsulatingSample:ChargeaccumulationonsurfaceUncertainΦchargeneutralizationForAES,thissurfacechargeproblemwithinsulatingsamplesismoredifficulttoovercomebecausetheelectronshavetoberemovedfromtheinsulatingsurface,insteadofcompensatingforelectronloss.AESdoesnotworkwellwithtotallyinsulatingmaterials.XPS28CompositionImagingsimilartotheEDSmappingResolution:10μm(XPS);10nm(AES)Comparisonbetweenimagesofgold-coatedstainlesssteel:(a)ascanningelectronmicroscope(SEM)secondaryelectronimage;(b)ironAugerimage;(c)oxygenAugerimage;(d)goldAugerimage;and(e)nickelAugerimage.29XPSimagesofaTiAlNthinfilmonastainlesssteelsubstrate:(a)Ti2pphotoelectronimage;and(b)Fe2pphotoelectronimage.Theoxidizedfilmcontainsironthathasmigratedfromthesubstrate.304.2QuantitativeAnalysisAESsensitivityfactorsnormalizedtotheCuLMMlinefor10keVelectronradiation.Sensitivityfactorsarecalculatedfromthepeak
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中級財(cái)務(wù)會計(jì)學(xué)知到課后答案智慧樹章節(jié)測試答案2025年春湖南工學(xué)院
- 四川工業(yè)科技學(xué)院《景觀設(shè)計(jì)(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西南民族大學(xué)《化工機(jī)械強(qiáng)度與振動(dòng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 洛陽理工學(xué)院《組織學(xué)與胚胎學(xué)(B)》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川省資陽市2025屆五年級數(shù)學(xué)第二學(xué)期期末調(diào)研試題含答案
- 海南健康管理職業(yè)技術(shù)學(xué)院《中國古代文學(xué)A(V)》2023-2024學(xué)年第二學(xué)期期末試卷
- 大同煤炭職業(yè)技術(shù)學(xué)院《個(gè)案工作實(shí)務(wù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州華商學(xué)院《藥理學(xué)實(shí)驗(yàn)A》2023-2024學(xué)年第二學(xué)期期末試卷
- 古詩詞中煉字的好處
- 工程質(zhì)量控制中的常見問題與解決方案
- 2025廣東深圳證券交易所及其下屬單位信息技術(shù)專業(yè)人員招聘筆試參考題庫附帶答案詳解
- 汽車租賃項(xiàng)目投標(biāo)書
- 2024《整治形式主義為基層減負(fù)若干規(guī)定》全文課件
- 20以內(nèi)加減法口算題(10000道)(A4直接打印-每頁100題)
- GB/T 20416-2006自然保護(hù)區(qū)生態(tài)旅游規(guī)劃技術(shù)規(guī)程
- GB/T 12669-1990半導(dǎo)體變流串級調(diào)速裝置總技術(shù)條件
- 中醫(yī)護(hù)理技術(shù)操作并發(fā)癥的預(yù)防及處理教案資料
- 《中華人民共和國殘疾人證申請表》
- 《企業(yè)員工培訓(xùn)國內(nèi)外文獻(xiàn)綜述》4800字
- 《游擊隊(duì)歌》-完整版PPT
- DB11-T 1832.8-2022建筑工程施工工藝規(guī)程 第8部分:門窗工程
評論
0/150
提交評論