版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)是純虛數(shù),則()A.3 B.5 C. D.2.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.3.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.4.若將函數(shù)的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關于點對稱 D.函數(shù)在上最大值是15.若復數(shù)滿足,則()A. B. C. D.6.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.7.已知,,則的大小關系為()A. B. C. D.8.已知集合,,則()A. B. C. D.9.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標的和為()A. B. C. D.10.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.11.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.12.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.14.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.15.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.16.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標準差為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.18.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.19.(12分)已知橢圓的離心率為是橢圓的一個焦點,點,直線的斜率為1.(1)求橢圓的方程;(1)若過點的直線與橢圓交于兩點,線段的中點為,是否存在直線使得?若存在,求出的方程;若不存在,請說明理由.20.(12分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.21.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)已知,函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
先由已知,求出,進一步可得,再利用復數(shù)模的運算即可【題目詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【答案點睛】本題考查復數(shù)的除法、復數(shù)模的運算,考查學生的運算能力,是一道基礎題.2、A【答案解析】
由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【題目詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【答案點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.3、C【答案解析】
先畫出函數(shù)圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構(gòu)造函數(shù),利用導數(shù)求其最小值即可.【題目詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C【答案點睛】此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.4、A【答案解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調(diào)遞增,正確;關于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【題目詳解】將橫坐標縮短到原來的得:當時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【答案點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).5、C【答案解析】
化簡得到,,再計算復數(shù)模得到答案.【題目詳解】,故,故,.故選:.【答案點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.6、D【答案解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【題目詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【答案點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.7、D【答案解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關系,進而得解.【題目詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【答案點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.8、B【答案解析】
求出集合,利用集合的基本運算即可得到結(jié)論.【題目詳解】由,得,則集合,所以,.故選:B.【答案點睛】本題主要考查集合的基本運算,利用函數(shù)的性質(zhì)求出集合是解決本題的關鍵,屬于基礎題.9、B【答案解析】
根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標,然后求和即可.【題目詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標的和,故選B.【答案點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).10、B【答案解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【題目詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【答案點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關鍵.11、A【答案解析】
若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【題目詳解】解:,∴,設,∴,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【答案點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學運算能力.12、D【答案解析】
由得,又,兩式相除即可解出.【題目詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【答案點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【題目詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【答案點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.14、64【答案解析】
由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【題目詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【答案點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎題.15、【答案解析】
取的中點,設等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【題目詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【答案點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據(jù)三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.16、【答案解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標準差.【題目詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標準差為1.故答案為:1.【答案點睛】本題考查一組數(shù)據(jù)據(jù)的標準差的求法,考查平均數(shù)、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【答案解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【題目詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【答案點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關鍵在于熟練掌握相關判定定理,找出平行關系和垂直關系證明.18、(1);(2)【答案解析】
(1)直接利用轉(zhuǎn)換公式,把參數(shù)方程,直角坐標方程與極坐標方程進行轉(zhuǎn)化;(2)利用極坐標方程將轉(zhuǎn)化為三角函數(shù)求解即可.【題目詳解】(1)因為,所以的普通方程為,又,,,的極坐標方程為,的方程即為,對應極坐標方程為.(2)由己知設,,則,,所以,又,,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【答案點睛】本題主要考查了直角坐標方程,參數(shù)方程與極坐標方程的互化,三角函數(shù)的值域求解等知識,考查了學生的運算求解能力.19、(1)(1)不存在,理由見解析【答案解析】
(1)利用離心率和過點,列出等式,即得解(1)設的方程為,與橢圓聯(lián)立,利用韋達定理表示中點N的坐標,用點坐標表示,利用韋達關系代入,得到關于k的等式,即可得解.【題目詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當直線的斜率不存在時,,不符合題意.當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立得,設,則,,,即.設,則,,,則,即,整理得,此方程無解,故的方程不存在.綜上所述,不存在直線使得.【答案點睛】本題考查了直線和橢圓綜合,考查了弦長和中點問題,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.20、(1)(2){1,2}.【答案解析】
(1)求解導數(shù),表示出,再利用的導數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【題目詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調(diào)遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數(shù),則,設,則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【答案點睛】本題主要考查導數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025幼兒園學期計劃
- 2025年大學班主任會計班工作計劃班主任工作計劃
- 2025年酒店工程部工作計劃格式結(jié)尾
- 2025年高一班主任工作計劃范文
- Unit 4 Chinese folk art- Integration 說課稿2024-2025學年牛津譯林版英語七年級上冊
- 2025年技術部工作計劃2
- 濕廁紙相關行業(yè)投資方案范本
- 醫(yī)用射線防護用品裝置相關行業(yè)投資規(guī)劃報告
- Unit 4 Why dont you talk to your parents Section A 3a~3c說課稿-2024-2025學年人教新目標八年級英語下冊
- 溶劑型色漿相關行業(yè)投資方案范本
- 英法核動力裝置
- GB/T 41837-2022溫泉服務溫泉水質(zhì)要求
- YS/T 79-2006硬質(zhì)合金焊接刀片
- 考研考博-英語-山東師范大學押題密卷附帶答案詳解篇
- 實用性閱讀與交流任務群設計思路與教學建議
- 中醫(yī)診療器具清洗消毒(醫(yī)院感染防控專家課堂培訓課件)
- 通風設施標準
- 藥廠生產(chǎn)車間現(xiàn)場管理-PPT課件
- 軸與孔標準公差表
- 防火門施工方案
- 人教PEP版2022-2023六年級英語上冊期末試卷及答案(含聽力材料)
評論
0/150
提交評論