2022-2023學(xué)年江蘇省南通市如東縣九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2022-2023學(xué)年江蘇省南通市如東縣九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2022-2023學(xué)年江蘇省南通市如東縣九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2022-2023學(xué)年江蘇省南通市如東縣九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2022-2023學(xué)年江蘇省南通市如東縣九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,PA與PB分別與圓O相切與A、B兩點,∠P=80o,則∠C=()A.45 B.50 C.55 D.602.下列四種圖案中,不是中心對稱圖形的為()A. B. C. D.3.如圖,用菱形紙片按規(guī)律依次拼成如圖圖案,第個圖案有個菱形紙片,第個圖案有個菱形紙片,第個圖案有個菱形紙片,按此規(guī)律,第個圖案中菱形紙片數(shù)量為()A. B. C. D.4.已知反比例函數(shù),下列各點在此函數(shù)圖象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)5.下列對拋物線y=-2(x-1)2+3性質(zhì)的描寫中,正確的是(

)A.開口向上 B.對稱軸是直線x=1 C.頂點坐標(biāo)是(-1,3) D.函數(shù)y有最小值6.圖中信息是小明和小華射箭的成績,兩人都射了10箭,則射箭成績的方差較大的是()A.小明 B.小華 C.兩人一樣 D.無法確定7.如圖,將Rt△ABC繞直角頂點A,沿順時針方向旋轉(zhuǎn)后得到Rt△AB1C1,當(dāng)點B1恰好落在斜邊BC的中點時,則∠B1AC=()A.25° B.30° C.40° D.60°8.如圖,的半徑為,圓心到弦的距離為,則的長為()A. B. C. D.9.如圖,已知AB∥CD∥EF,它們依次交直線l1、l2于點A、D、F和點B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A. B. C. D.10.一個扇形的半徑為4,弧長為,其圓心角度數(shù)是()A. B. C. D.二、填空題(每小題3分,共24分)11.一個幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),計算出該幾何體的表面積是__________.12.若記表示任意實數(shù)的整數(shù)部分,例如:,,…,則(其中“+”“-”依次相間)的值為______.13.計算:sin30°=_____.14.將拋物線向左平移3個單位,再向下平移2個單位,則得到的拋物線解析式是________.(結(jié)果寫成頂點式)15.如圖所示,在菱形OABC中,點B在x軸上,點A的坐標(biāo)為(6,10),則點C的坐標(biāo)為_____.16.如圖,某數(shù)學(xué)興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.17.已知甲、乙兩組數(shù)據(jù)的折線圖如圖,設(shè)甲、乙兩組數(shù)據(jù)的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)18.一種藥品原價每盒25元,兩次降價后每盒16元.設(shè)兩次降價的百分率都為x,可列方程________.三、解答題(共66分)19.(10分)計算:(1);(2).20.(6分)如圖,一天,我國一漁政船航行到A處時,發(fā)現(xiàn)正東方向的我領(lǐng)海區(qū)域B處有一可疑漁船,正在以12海里∕小時的速度向西北方向航行,我漁政船立即沿北偏東60o方向航行,1.5小時后,在我領(lǐng)海區(qū)域的C處截獲可疑漁船.問我漁政船的航行路程是多少海里?(結(jié)果保留根號)21.(6分)如圖,AB=3AC,BD=3AE,又BD∥AC,點B,A,E在同一條直線上.求證:△ABD∽△CAE22.(8分)在圖1的6×6的網(wǎng)格中,已知格點△ABC(頂點A、B、C都在格各點上)(1)在圖1中,畫出與△ABC面積相等的格點△ABD(不與△ABC全等),畫出一種即可;(2)在圖2中,畫出與△ABC相似的格點△A′B′C′(不與ABC全等),且兩個三角形的對應(yīng)邊分別互相垂直,畫出一種即可.23.(8分)如圖,在Rt△ABC中,∠C=90°,矩形DEFG的頂點G、F分別在邊AC、BC上,D、E在邊AB上.(1)求證:△ADG∽△FEB;(2)若AD=2GD,則△ADG面積與△BEF面積的比為.24.(8分)解方程25.(10分)如圖所示,點A(,3)在雙曲線y=上,點B在雙曲線y=之上,且AB∥x軸,C,D在x軸上,若四邊形ABCD為矩形,求它的面積.26.(10分)關(guān)于x的一元二次方程有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若,是一元二次方程的兩個根,且,求m的值.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接AO,BO,根據(jù)題意可得∠PAO=∠PBO=90°,根據(jù)∠P=80°得出∠AOB=100°,利用圓周角定理即可求出∠C.【詳解】解:連接AO,BO,∵PA與PB分別與圓O相切與A、B兩點,∴∠PAO=∠PBO=90°,∵∠P=80°,∴∠AOB=360°-90°-90°-80°=100°,∴∠C=,故選:B.【點睛】本題考查了切線的性質(zhì)以及圓周角定理,解題的關(guān)鍵是熟知切線的性質(zhì)以及圓周角定理的內(nèi)容.2、D【分析】根據(jù)中心對稱圖形的定義逐個判斷即可.【詳解】解:A、是中心對稱圖形,故本選項不符合題意;

B、是中心對稱圖形,故本選項不符合題意;

C、是中心對稱圖形,故本選項符合題意;

D、不是中心對稱圖形,故本選項符合題意;故選D.【點睛】本題考查了對中心對稱圖形的定義,判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.能熟知中心對稱圖形的定義是解此題的關(guān)鍵.3、D【解析】觀察圖形發(fā)現(xiàn):每增加一個圖形,菱形紙片增加4個,從而得到通項公式,代入n=7求解即可.【詳解】觀察圖形發(fā)現(xiàn):第1個圖案中有5=4×1+1個菱形紙片;第2個圖案中有9=4×2+1個菱形紙片;第3個圖形中有13=4×3+1個菱形紙片,…第n個圖形中有4n+1個菱形紙片,當(dāng)n=7時,4×7+1=29個菱形紙片,故選:D.【點睛】屬于規(guī)律型:圖形的變化類,找出圖中菱形紙片個數(shù)的變化規(guī)律是解題的關(guān)鍵.4、B【解析】依次把各個選項的橫坐標(biāo)代入反比例函數(shù)的解析式中,得到縱坐標(biāo)的值,即可得到答案.【詳解】解:A.把x=3代入得:,即A項錯誤,B.把x=-2代入得:,即B項正確,C.把x=-2代入得:,即C項錯誤,D.把x=-3代入得:,即D項錯誤,故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,正確掌握代入法是解題的關(guān)鍵.5、B【分析】由拋物線的解析式可求得開口方向、對稱軸及頂點坐標(biāo),再逐一進行判斷即可.【詳解】解:A、∵?2<0,∴拋物線的開口向下,故A錯誤,不符合題意;B、拋物線的對稱軸為:x=1,故B正確,符合題意;C、拋物線的頂點為(1,3),故C錯誤,不符合題意;D、因為開口向下,故該函數(shù)有最大值,故D錯誤,不符合題意.故答案為:B.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x?h)2+k中,頂點坐標(biāo)為(h,k),對稱軸為x=h.6、B【分析】根據(jù)圖中的信息找出波動性小的即可.【詳解】解:根據(jù)圖中的信息可知,小明的成績波動性小,則這兩人中成績穩(wěn)定的是小明;

故射箭成績的方差較大的是小華,

故選:B.【點睛】本題考查了方差的意義,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.7、B【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得AB1=BB1,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AB1=AB,旋轉(zhuǎn)角等于∠BAB1,則可判斷△ABB1為等邊三角形,所以∠BAB1=60°,從而得出結(jié)論.【詳解】解:∵點B1為斜邊BC的中點,∴AB1=BB1,∵△ABC繞直角頂點A順時針旋轉(zhuǎn)到△AB1C1的位置,∴AB1=AB,旋轉(zhuǎn)角等于∠BAB1,∴AB1=BB1=AB,∴△ABB1為等邊三角形,∴∠BAB1=60°.∴∠B1AC=90°﹣60°=30°.故選:B.【點睛】本題主要考察旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是判斷出△ABB1為等邊三角形.8、D【分析】過點O作OC⊥AB于C,連接OA,根據(jù)勾股定理求出AC長,根據(jù)垂徑定理得出AB=2CA,代入求出即可.【詳解】過點O作OC⊥AB于C,連接OA,則OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC過圓心O,∴AB=2AC=16,故選D.【點睛】本題主要考查了勾股定理和垂徑定理等知識點的應(yīng)用,正確作出輔助線是關(guān)鍵.9、C【分析】根據(jù)平行線分線段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可計算出CE的長,即可.【詳解】解:∵AB∥CD∥EF,

∴,

∴BC=3CE,

∵BC+CE=BE,

∴3CE+CE=10,

∴CE=.

故選C.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.10、C【分析】根據(jù)弧長公式即可求出圓心角的度數(shù).【詳解】解:∵扇形的半徑為4,弧長為,∴解得:,即其圓心角度數(shù)是故選C.【點睛】此題考查的是根據(jù)弧長和半徑求圓心角的度數(shù),掌握弧長公式是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)三視圖可得出該幾何體為圓錐,圓錐的表面積=底面積+側(cè)面積(側(cè)面積將圓錐的側(cè)面積不成曲線地展開,是一個扇形.),用字母表示就是S=πr2+πrl(其中l(wèi)=母線,是圓錐的頂點到圓錐的底面圓周之間的距離).【詳解】解:由題意可知,該幾何體是圓錐,其中底面半徑為2,母線長為6,∴故答案為:.【點睛】本題考查的知識點是幾何體的三視圖以及圓錐的表面積公式,熟記圓錐的面積公式是解此題的關(guān)鍵.12、-22【分析】先確定的整數(shù)部分的規(guī)律,根據(jù)題意確定算式的運算規(guī)律,再進行實數(shù)運算.【詳解】解:觀察數(shù)據(jù)12=1,22=4,32=9,42=16,52=25,62=36的特征,得出數(shù)據(jù)1,2,3,4……2020中,算術(shù)平方根是1的有3個,算術(shù)平方根是2的有5個,算數(shù)平方根是3的有7個,算數(shù)平方根是4的有9個,…其中432=1849,442=1936,452=2025,所以在、中,算術(shù)平方根依次為1,2,3……43的個數(shù)分別為3,5,7,9……個,均為奇數(shù)個,最大算數(shù)平方根為44的有85個,所以=1-2+3-4+…+43-44=-22【點睛】本題考查自定義運算,通過正整數(shù)的算術(shù)平方根的整數(shù)部分出現(xiàn)的規(guī)律,找到算式中相同加數(shù)的個數(shù)及符號的規(guī)律,方能進行運算.13、1【解析】根據(jù)sin30°=12【詳解】sin30°=12【點睛】本題考查的知識點是特殊角的三角函數(shù)值,解題的關(guān)鍵是熟練的掌握特殊角的三角函數(shù)值.14、【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線y=x2向左平移3個單位后所得直線解析式為:y=(x+3)2;再向下平移2個單位為:.故答案為:【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.15、(6,﹣10)【分析】根據(jù)菱形的性質(zhì)可知A、C關(guān)于直線OB對稱,再根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特點:橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)解答即可.【詳解】解:∵四邊形OABC是菱形,∴A、C關(guān)于直線OB對稱,∵A(6,10),∴C(6,﹣10),故答案為:(6,﹣10).【點睛】本題考查了菱形的性質(zhì)和關(guān)于x軸對稱的點的坐標(biāo)特點,屬于基本題型,熟練掌握菱形的性質(zhì)是關(guān)鍵.16、25【解析】試題解析:由題意17、>【解析】要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據(jù)折線統(tǒng)計圖結(jié)合根據(jù)平均數(shù)的計算公式求出這兩組數(shù)據(jù)的平均數(shù);接下來根據(jù)方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數(shù)為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數(shù)為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術(shù)平均數(shù),折線統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握方差,算術(shù)平均數(shù),折線統(tǒng)計圖.18、25(1-x)2=16【解析】試題分析:對于增長率和降低率問題的一般公式為:增長前數(shù)量×=增長后的數(shù)量,降低前數(shù)量×=降低后的數(shù)量,故本題的答案為:三、解答題(共66分)19、(1);(2)2【分析】(1)利用特殊角的三角函數(shù)值分別代入計算即可;(2)利用特殊角的三角函數(shù)值以及零次冪的值分別代入計算即可.【詳解】解:(1)原式;(2)原式=.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶三角函數(shù)值是解題關(guān)鍵.20、我漁政船的航行路程是海里.【分析】過C點作AB的垂線,垂足為D,構(gòu)建Rt△ACD,Rt△BCD,解這兩個直角三角形即可.【詳解】解:如圖:作CD⊥AB于點D,∵在Rt△BCD中,BC=12×1.5=18海里,∠CBD=45°,∴CD=BC?sin45°=(海里).∴在Rt△ACD中,AC=CD÷sin30°=(海里).答:我漁政船的航行路程是海里.點睛:考查了解直角三角形的應(yīng)用(方向角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.21、見解析【分析】根據(jù)已知條件,易證得AB:AC和BD:AE的值相等,由BD∥AC,得∠EAC=∠B;由此可根據(jù)SAS判定兩個三角形相似.【詳解】證明:∵,∴∵∴∴.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定是解題的關(guān)鍵.22、(1)見詳解;(2)見詳解【分析】(1)利用等底同高作三角形ABD;(2)利用相似比為2畫△A1B1C1.【詳解】解:(1)如圖1,△ABD為所作;(2)如圖2,△A1B1C1為所作.【點睛】本題考查了作圖??相似變換:兩個圖形相似,其中一個圖形可以看作由另一個圖形放大或縮小得到.也考查了全等三角形的性質(zhì).23、(1)證明見解析;(2)4.【分析】(1)易證∠AGD=∠B,根據(jù)∠ADG=∠BEF=90°,即可證明△ADG∽△FEB;(2)相似三角形的性質(zhì)解答即可.【詳解】(1)證明:∵∠C=90°,

∴∠A+∠B=90°,

∵四邊形DEFG是矩形,

∴∠GDE=∠FED=90°,

∴∠GDA+∠FEB=90°,

∴∠A+∠AGD=90°,

∴∠B=∠AGD,

且∠GDA=∠FEB=90°,

∴△ADG∽△FEB.(2)解:∵△ADG∽△FEB,

∴,∵AD=2GD,∴,∴.【點睛】本題考查了相似三角形的判定與性質(zhì),求證△ADG∽△FEB是解題的關(guān)鍵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論