版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)的一條對(duì)稱軸是()A. B. C. D.2.過(guò)雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.3.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.4.設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.5.總體由編號(hào)為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為()A.23 B.21 C.35 D.326.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.147.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.9.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.10.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長(zhǎng)為的等邊三角形,則該幾何體的體積為A. B. C. D.11.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.12.的展開(kāi)式中的系數(shù)是()A.160 B.240 C.280 D.320二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中的系數(shù)的和大于8而小于32,則______.14.如圖,某市一學(xué)校位于該市火車(chē)站北偏東方向,且,已知是經(jīng)過(guò)火車(chē)站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點(diǎn).當(dāng)?shù)卣顿Y開(kāi)發(fā)區(qū)域發(fā)展經(jīng)濟(jì),其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時(shí),面積為最小,政府投資最低?15.一個(gè)村子里一共有個(gè)人,其中一個(gè)人是謠言制造者,他編造了一條謠言并告訴了另一個(gè)人,這個(gè)人又把謠言告訴了第三個(gè)人,如此等等.在每一次謠言傳播時(shí),謠言的接受者都是在其余個(gè)村民中隨機(jī)挑選的,當(dāng)謠言傳播次之后,還沒(méi)有回到最初的造謠者的概率是_______.16.已知雙曲線的左焦點(diǎn)為,、為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為,若,且直線的斜率為,則__________,雙曲線的離心率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷(xiāo)海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷(xiāo)合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷(xiāo),且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷(xiāo),利潤(rùn)記為100元.①求10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.20.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過(guò)點(diǎn),斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【答案解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對(duì)稱軸方程即可.【題目詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過(guò)平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【答案點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.2、C【答案解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).3、A【答案解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【題目詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【答案點(diǎn)睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.4、C【答案解析】
恰有兩個(gè)極值點(diǎn),則恰有兩個(gè)不同的解,求出可確定是它的一個(gè)解,另一個(gè)解由方程確定,令通過(guò)導(dǎo)數(shù)判斷函數(shù)值域求出方程有一個(gè)不是1的解時(shí)t應(yīng)滿足的條件.【題目詳解】由題意知函數(shù)的定義域?yàn)椋?因?yàn)榍∮袃蓚€(gè)極值點(diǎn),所以恰有兩個(gè)不同的解,顯然是它的一個(gè)解,另一個(gè)解由方程確定,且這個(gè)解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當(dāng)且時(shí),恰有兩個(gè)極值點(diǎn),即實(shí)數(shù)的取值范圍是.故選:C【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應(yīng)用,屬于中檔題.5、B【答案解析】
根據(jù)隨機(jī)數(shù)表法的抽樣方法,確定選出來(lái)的第5個(gè)個(gè)體的編號(hào).【題目詳解】隨機(jī)數(shù)表第1行的第4列和第5列數(shù)字為4和6,所以從這兩個(gè)數(shù)字開(kāi)始,由左向右依次選取兩個(gè)數(shù)字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號(hào)01,02,…,39,40內(nèi)的有:16,26,16,24,23,21,…依次不重復(fù)的第5個(gè)編號(hào)為21.故選:B【答案點(diǎn)睛】本小題主要考查隨機(jī)數(shù)表法進(jìn)行抽樣,屬于基礎(chǔ)題.6、A【答案解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【題目詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【答案點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.7、C【答案解析】
由復(fù)數(shù)除法求出,寫(xiě)出共軛復(fù)數(shù),寫(xiě)出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【題目詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.8、B【答案解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【題目詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【答案點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.9、D【答案解析】
如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【題目詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)椋?,因?yàn)?,?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【答案點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.10、C【答案解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長(zhǎng)為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.11、D【答案解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫(huà)出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【題目詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)椋?,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【答案點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.12、C【答案解析】
首先把看作為一個(gè)整體,進(jìn)而利用二項(xiàng)展開(kāi)式求得的系數(shù),再求的展開(kāi)式中的系數(shù),二者相乘即可求解.【題目詳解】由二項(xiàng)展開(kāi)式的通項(xiàng)公式可得的第項(xiàng)為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【答案點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式指定項(xiàng)的系數(shù),掌握二項(xiàng)展開(kāi)式的通項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【答案解析】
由題意可得項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【題目詳解】觀察式子可知,,故答案為:4.【答案點(diǎn)睛】該題考查的是有關(guān)二項(xiàng)式定理的問(wèn)題,涉及到的知識(shí)點(diǎn)有展開(kāi)式中項(xiàng)的系數(shù)和,屬于基礎(chǔ)題目.14、(1);(2).【答案解析】
(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進(jìn)而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡(jiǎn)整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進(jìn)而對(duì)原面積的函數(shù)用含t的表達(dá)式換元,再令進(jìn)行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【題目詳解】解:(1)以點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因?yàn)橹本€與圓相切,所以.因?yàn)辄c(diǎn)在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時(shí),取得最大值,取最小值.答:當(dāng)時(shí),面積為最小,政府投資最低.【答案點(diǎn)睛】本題考查三角函數(shù)的實(shí)際應(yīng)用,應(yīng)優(yōu)先結(jié)合實(shí)際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.15、【答案解析】
利用相互獨(dú)立事件概率的乘法公式即可求解.【題目詳解】第1次傳播,謠言一定不會(huì)回到最初的人;從第2次傳播開(kāi)始,每1次謠言傳播,第一個(gè)制造謠言的人被選中的概率都是,沒(méi)有被選中的概率是.次傳播是相互獨(dú)立的,故為故答案為:【答案點(diǎn)睛】本題考查了相互獨(dú)立事件概率的乘法公式,考查了考生的分析能力,屬于基礎(chǔ)題.16、【答案解析】
設(shè),,根據(jù)中點(diǎn)坐標(biāo)公式可得坐標(biāo),利用可得到點(diǎn)坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點(diǎn)坐標(biāo)代入雙曲線方程,結(jié)合焦點(diǎn)坐標(biāo)可求得,進(jìn)而得到離心率.【題目詳解】左焦點(diǎn)為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【答案點(diǎn)睛】本題考查直線與雙曲線的綜合應(yīng)用問(wèn)題,涉及到直線截雙曲線所得線段長(zhǎng)度的求解、雙曲線離心率的求解問(wèn)題;關(guān)鍵是能夠通過(guò)設(shè)點(diǎn)的方式,結(jié)合直線斜率、垂直關(guān)系、點(diǎn)在雙曲線上來(lái)構(gòu)造方程組求得所需變量的值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)①可能是2件;②詳見(jiàn)解析【答案解析】
(1)由一件手工藝品質(zhì)量為B級(jí)的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷(xiāo)的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷(xiāo)的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級(jí)的概率,進(jìn)而可列出X的分布列,求出期望即可.【題目詳解】(1)一件手工藝品質(zhì)量為B級(jí)的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷(xiāo)的手工藝品可能是件,則,則,其中,.由得,整數(shù)不存在,由得,所以當(dāng)時(shí),,即,由得,所以當(dāng)時(shí),,所以當(dāng)時(shí),最大,即10件手工藝品中不能外銷(xiāo)的手工藝品最有可能是2件.②由題意可知,一件手工藝品質(zhì)量為A級(jí)的概率為,一件手工藝品質(zhì)量為B級(jí)的概率為,一件手工藝品質(zhì)量為C級(jí)的概率為,一件手工藝品質(zhì)量為D級(jí)的概率為,所以X的分布列為:X900600300100P則期望為.【答案點(diǎn)睛】本題考查相互獨(dú)立事件的概率計(jì)算,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查學(xué)生的計(jì)算求解能力,屬于中檔題.18、(1)證明見(jiàn)解析(2)【答案解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【題目詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.【答案點(diǎn)睛】本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.19、(1)1(2)【答案解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【題目詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿足題意.(ii)若時(shí),,滿足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以,即.變形得,,所以時(shí),,所以當(dāng)時(shí),.又由上式得,當(dāng)時(shí),,,.因此不等式(*)均成立.令(),則,(i)若時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.(ii)若時(shí),,在單調(diào)遞增,所以.因此,①當(dāng)時(shí),此時(shí),,,則需由(*)知,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),所以.②當(dāng)時(shí),此時(shí),,則當(dāng)時(shí),(由(*)知);當(dāng)時(shí),(由(*)知).故對(duì)于任意,.綜上述:.【答案點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于恒成立問(wèn)題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.20、(1)見(jiàn)解析;(2)【答案解析】
(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下商業(yè)街開(kāi)發(fā)頂管施工合同
- 醫(yī)院物業(yè)經(jīng)理雇傭合同模板
- 洗浴中心電梯施工協(xié)議
- 2024年銷(xiāo)售人員銷(xiāo)售策略制定與執(zhí)行協(xié)議3篇
- 2024版安裝作業(yè)第三方外包協(xié)議模板版B版
- 研究開(kāi)發(fā)合同管理典范
- 意大利料理店標(biāo)線施工協(xié)議
- 2024經(jīng)營(yíng)權(quán)抵押貸款合同
- 2024航空公司餐食供應(yīng)合同
- 2024砂石料開(kāi)采與礦山生態(tài)修復(fù)合作框架協(xié)議書(shū)2篇
- 工程施工揚(yáng)塵防治教育培訓(xùn)
- 紅薯采購(gòu)合同模板
- 影視后期制作團(tuán)隊(duì)薪酬激勵(lì)方案
- 污水管網(wǎng)技術(shù)標(biāo)
- 2023年河南省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 《輸液港的護(hù)理》課件
- 新修訂反洗錢(qián)法律知識(shí)培訓(xùn)課件
- 精彩的儲(chǔ)運(yùn)部年終總結(jié)
- 山西省太原市重點(diǎn)中學(xué)2025屆物理高一第一學(xué)期期末統(tǒng)考試題含解析
- Python開(kāi)發(fā)工程師招聘筆試題及解答(某大型國(guó)企)
- 2024年農(nóng)民職業(yè)農(nóng)業(yè)素質(zhì)技能考試題庫(kù)(附含答案)
評(píng)論
0/150
提交評(píng)論