2023學(xué)年陜西省尚德中學(xué)高三一診考試數(shù)學(xué)試卷(含解析)_第1頁
2023學(xué)年陜西省尚德中學(xué)高三一診考試數(shù)學(xué)試卷(含解析)_第2頁
2023學(xué)年陜西省尚德中學(xué)高三一診考試數(shù)學(xué)試卷(含解析)_第3頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.2.函數(shù)的圖象的大致形狀是()A. B. C. D.3.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.4.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.5.已知定義在上的函數(shù)滿足,且當(dāng)時,,則方程的最小實根的值為()A. B. C. D.6.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.147.已知是虛數(shù)單位,若,則()A. B.2 C. D.108.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.10.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}11.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.12.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則______.14.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面15.已知向量,,則______.16.定義在上的偶函數(shù)滿足,且,當(dāng)時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若的解集包含,求的取值范圍.20.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,求函數(shù)在上最小值.21.(12分)中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結(jié)論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設(shè)橢圓的離心率為,當(dāng)點為橢圓的右頂點時,的坐標(biāo)為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】

利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【題目詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【答案點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.2、B【答案解析】

根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號可判斷在上單調(diào)遞增,即可排除AC選項.【題目詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時,;又當(dāng)時,,故在上單調(diào)遞增,所以,綜上,時,,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【答案點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.3、D【答案解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.4、B【答案解析】

奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【題目詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【答案點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.5、C【答案解析】

先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【題目詳解】當(dāng)時,,所以,故當(dāng)時,,所以,而,所以,又當(dāng)時,的極大值為1,所以當(dāng)時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【答案點睛】本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.6、A【答案解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【題目詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【答案點睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.7、C【答案解析】

根據(jù)復(fù)數(shù)模的性質(zhì)計算即可.【題目詳解】因為,所以,,故選:C【答案點睛】本題主要考查了復(fù)數(shù)模的定義及復(fù)數(shù)模的性質(zhì),屬于容易題.8、C【答案解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).9、B【答案解析】

列出循環(huán)的每一步,進而可求得輸出的值.【題目詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當(dāng),時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【答案點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.10、B【答案解析】

按補集、交集定義,即可求解.【題目詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【答案點睛】本題考查集合間的運算,屬于基礎(chǔ)題.11、D【答案解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.12、D【答案解析】

直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【題目詳解】∵∴其共軛復(fù)數(shù)為.故選:D【答案點睛】熟悉復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】

根據(jù)向量加法和減法的坐標(biāo)運算,先分別求得與,再結(jié)合向量的模長公式即可求得的值.【題目詳解】向量,則,則因為即,化簡可得解得故答案為:【答案點睛】本題考查了向量坐標(biāo)加法和減法的運算,向量模長的求法,屬于基礎(chǔ)題.14、π.【答案解析】

設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【題目詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【答案點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.15、【答案解析】

求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【題目詳解】由題意得,.,.,,.故答案為:.【答案點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.16、24【答案解析】

根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【題目詳解】解:因為為偶函數(shù)且,所以的周期為.因為時,,所以可作出在區(qū)間上的圖象,而方程的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡圖,可知兩個函數(shù)的圖象在區(qū)間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標(biāo)之和為,所以,故.因為,所以.故.故答案為:;【答案點睛】本題考查函數(shù)的奇偶性、周期性、對稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析.(2)【答案解析】

(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【題目詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標(biāo)原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【答案點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【答案解析】

(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【題目詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【答案點睛】本題主要考查了正余弦定理的應(yīng)用,運用二倍角公式和兩角和的正弦公式求值,考查了學(xué)生的運算求解能力.19、(1);(2).【答案解析】

(1)對范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時,”恒成立,利用絕對值不等式的性質(zhì)可得:,問題得解.【題目詳解】當(dāng)時,,當(dāng)時,由得,解得;當(dāng)時,無解;當(dāng)時,由得,解得,所以的解集為(2)的解集包含等價于在上恒成立,當(dāng)時,等價于恒成立,而,∴,故滿足條件的的取值范圍是【答案點睛】本題主要考查了含絕對值不等式的解法,還考查了轉(zhuǎn)化能力及絕對值不等式的性質(zhì),考查計算能力,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ)當(dāng)時,函數(shù)的最小值是;當(dāng)時,函數(shù)的最小值是【答案解析】

(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負,即可得到函數(shù)f(x)的單調(diào)區(qū)間;

(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時,函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【題目詳解】函數(shù)的定義域

為.

因為,令,可得;

當(dāng)時,;當(dāng)時,,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時,函數(shù)在區(qū)間上是減函數(shù),

的最小值是當(dāng),即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時,函數(shù)在上是增函數(shù),在上是減函數(shù).

又,

當(dāng)時,的最小值是;

當(dāng)時,的最小值為綜上所述,結(jié)論為當(dāng)時,函數(shù)的最小值是;

當(dāng)時,函數(shù)的最小值是.【答案點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小21、(1)證明見解析,是,,,,;(2)【答案解析】

(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式求解.【題目詳解】(1)因為是球的直徑,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個面的直角分別是,,,.(2)如圖,以A為原點,,,所在直線為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點,從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【答案點睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.22、(1);(2)不存在,理由見解析【答案解析】

(1)寫出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論