2023學年河南安陽市林慮中學高考數(shù)學考前最后一卷預測卷(含解析)_第1頁
2023學年河南安陽市林慮中學高考數(shù)學考前最后一卷預測卷(含解析)_第2頁
2023學年河南安陽市林慮中學高考數(shù)學考前最后一卷預測卷(含解析)_第3頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數(shù)學模擬測試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.2.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.3.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.34.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.5.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度6.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.已知邊長為4的菱形,,為的中點,為平面內(nèi)一點,若,則()A.16 B.14 C.12 D.89.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓10.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.11.設,則,則()A. B. C. D.12.復數(shù)的模為().A. B.1 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)14.秦九韶算法是南宋時期數(shù)學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.15.我國古代數(shù)學名著《九章算術》對立體幾何有深入的研究,從其中一些數(shù)學用語可見,譬如“憋臑”意指四個面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個小正方形的邊長為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.16.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,求的最小值.18.(12分)如圖,設A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.19.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)在平面直角坐標系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.21.(12分)已知函數(shù)(1)當時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.22.(10分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【答案解析】

根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據(jù)基本不等式即可求出.【題目詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【答案點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數(shù)學運算能力和數(shù)學建模能力,屬于較難題.2、A【答案解析】

首先的單調(diào)性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【題目詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數(shù),.構造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【答案點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉化的數(shù)學思想方法,屬于難題.3、C【答案解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;4、D【答案解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【題目詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【答案點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.5、D【答案解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結果.【題目詳解】因為,所以只需將的圖象向右平移個單位.【答案點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.6、D【答案解析】

畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結合可得結果.【題目詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【答案點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.7、A【答案解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【題目詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【答案點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.8、B【答案解析】

取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結果.【題目詳解】取中點,連接,,,即.,,,則.故選:.【答案點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數(shù)量積的運算性質(zhì)進行求解.9、B【答案解析】

根據(jù)線段垂直平分線的性質(zhì),結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【題目詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【答案點睛】本題考查了雙曲線的定義,考查了數(shù)學運算能力和推理論證能力,考查了分類討論思想.10、B【答案解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【題目詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【答案點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.11、A【答案解析】

根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【題目詳解】,,.,顯然.,即,,即.綜上,.故選:.【答案點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.12、D【答案解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式求解.【題目詳解】解:,復數(shù)的模為.故選:D.【答案點睛】本題主要考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【答案解析】

①∵,∴平面

,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【題目詳解】①∵,∴平面

,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設正方體的棱長為2.則:,,所以,設面的法向量為,則,即,令,則,設面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設點的坐標為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.【答案點睛】本題考查空間里的線線,線面,面面關系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.14、1055【答案解析】

模擬執(zhí)行程序框圖中的程序,即可求得結果.【題目詳解】模擬執(zhí)行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【答案點睛】本題考查程序框圖的模擬執(zhí)行,屬基礎題.15、【答案解析】三視圖還原如下圖:,由于每個面是直角,顯然外接球球心O在AC的中點.所以,,填?!敬鸢更c睛】三視圖還原,當出現(xiàn)三個尖點在一個位置時,我們常用“揪尖法”。外接球球心到各個頂點的距離相等,而直角三角形斜邊上的中點到各頂點的距離相等,所以本題的球心為AC中點。16、【答案解析】

討論裝球盒子的個數(shù),計算得到答案.【題目詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【答案點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【答案解析】

討論和的情況,然后再分對稱軸和區(qū)間之間的關系,最后求出最小值【題目詳解】當時,,它在上是減函數(shù)故函數(shù)的最小值為當時,函數(shù)的圖象思維對稱軸方程為當時,,函數(shù)的最小值為當時,,函數(shù)的最小值為當時,,函數(shù)的最小值為綜上,【答案點睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題。18、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【答案解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【題目詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數(shù),由③知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【答案點睛】本題為數(shù)列的創(chuàng)新應用題,考查數(shù)學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進行推理求解,屬于較難題.19、(1);(2)【答案解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【題目詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【答案點睛】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.20、(1)(2)(2,).【答案解析】

(1)利用極坐標和直角坐標的轉化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標,然后化為極坐標即可.【題目詳解】(1)∵曲線C的極坐標方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(2,).【答案點睛】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論