下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.下圖是我國第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.53.如圖,圓的半徑為,,是圓上的定點(diǎn),,是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于直線的對稱點(diǎn)為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.4.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1205.五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.6.已知全集為,集合,則()A. B. C. D.7.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為11,則圖中的判斷條件可以為()A. B. C. D.9.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.10.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:11.已知平面向量,滿足且,若對每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.112.A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.14.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.15.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.16.已知函數(shù),若,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某生物硏究小組準(zhǔn)備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計(jì)該地區(qū)蜻蜓有兩種,且這兩種的個(gè)體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機(jī)變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機(jī)捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機(jī)變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結(jié)果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機(jī)捕捉3只,記這3只中翼長在區(qū)間的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望(分布列寫出計(jì)算表達(dá)式即可).注:若,則,,.18.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國各地紛紛馳援.截至1月30日12時(shí),湖北省累計(jì)接收捐贈(zèng)物資615.43萬件,包括醫(yī)用防護(hù)服2.6萬套N95口軍47.9萬個(gè),醫(yī)用一次性口罩172.87萬個(gè),護(hù)目鏡3.93萬個(gè)等.中某運(yùn)輸隊(duì)接到給武漢運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運(yùn)輸隊(duì)所花的成本最低?20.(12分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.21.(12分)某景點(diǎn)上山共有級臺階,寓意長長久久.甲上臺階時(shí),可以一步走一個(gè)臺階,也可以一步走兩個(gè)臺階,若甲每步上一個(gè)臺階的概率為,每步上兩個(gè)臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個(gè)臺階記分,一步走兩個(gè)臺階記分,記甲登上第個(gè)臺階的概率為,其中,且.(1)若甲走步時(shí)所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.2.B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢,29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.3.B【解析】
根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯(cuò)誤選項(xiàng),得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時(shí),P與A重合,則與B重合,所以,故排除C,D選項(xiàng);當(dāng)時(shí),,由圖象可知選B.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達(dá)式是解題的關(guān)鍵,屬于中檔題.4.C【解析】
觀察規(guī)律得根號內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.5.A【解析】
列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.6.D【解析】
對于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.7.B【解析】
設(shè),則,可得,即可得到,進(jìn)而找到對應(yīng)的點(diǎn)所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)為,在第二象限.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.8.B【解析】
根據(jù)程序框圖知當(dāng)時(shí),循環(huán)終止,此時(shí),即可得答案.【詳解】,.運(yùn)行第一次,,不成立,運(yùn)行第二次,,不成立,運(yùn)行第三次,,不成立,運(yùn)行第四次,,不成立,運(yùn)行第五次,,成立,輸出i的值為11,結(jié)束.故選:B.【點(diǎn)睛】本題考查補(bǔ)充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意模擬程序一步一步執(zhí)行的求解策略.9.A【解析】
首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,得,因?yàn)椋?,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10.C【解析】
根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.11.B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.12.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.14.【解析】
求的最小值可以轉(zhuǎn)化為求以AB為直徑的圓到點(diǎn)O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設(shè),由題,得,又,所以,則點(diǎn)C在以AB為直徑的圓上,取AB的中點(diǎn)為M,則,設(shè)以AB為直徑的圓與線段OM的交點(diǎn)為E,則的最小值是,因?yàn)?,又,所以的最小值?故答案為:【點(diǎn)睛】本題主要考查向量的綜合應(yīng)用問題,涉及到圓的相關(guān)知識與余弦定理,考查學(xué)生的分析問題和解決問題的能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.15.11【解析】
將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.16.【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)?,所以其定義域關(guān)于原點(diǎn)對稱,又,所以函數(shù)為奇函數(shù),因?yàn)?,所?故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解析】
(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運(yùn)算即可;(Ⅱ)可判斷均值應(yīng)為,再結(jié)合(1)和題干備注信息可得,進(jìn)而求解;(Ⅲ)求得,該分布符合二項(xiàng)分布,故,列出分布列,計(jì)算出對應(yīng)概率,結(jié)合即可求解;【詳解】(Ⅰ)記這只蜻蜓的翼長為.因?yàn)榉N蜻蜓和種蜻蜓的個(gè)體數(shù)量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.(Ⅱ)由于兩種蜻蜓的個(gè)體數(shù)量相等,的方差也相等,根據(jù)正態(tài)曲線的對稱性,可知由(Ⅰ)可知,得.(Ⅲ)設(shè)蜻蜓的翼長為,則.由題有,所以.因此的分布列為.【點(diǎn)睛】本題考查正態(tài)分布基本量的求解,二項(xiàng)分布求解離散型隨機(jī)變量分布列和期望,屬于中檔題18.(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號,由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題.19.每天派出A型卡車輛,派出B型卡車輛,運(yùn)輸隊(duì)所花成本最低【解析】
設(shè)每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標(biāo)函數(shù)取最小值的整數(shù)解,即可得解.【詳解】設(shè)每天派出A型卡車輛,則派出B型卡車輛,運(yùn)輸隊(duì)所花成本為元,由題意可知,,整理得,目標(biāo)函數(shù),如圖所示,為不等式組表示的可行域,由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),最小,解方程組,解得,,然而,故點(diǎn)不是最優(yōu)解.因此在可行域的整點(diǎn)中,點(diǎn)使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運(yùn)輸隊(duì)所花成本最低.【點(diǎn)睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數(shù)解問題,考查了數(shù)形結(jié)合的思想,解題關(guān)鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù),同時(shí)注意整點(diǎn)的選取,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市基礎(chǔ)設(shè)施建設(shè)渣土外運(yùn)合同
- 2(2024版)生物制藥原料供應(yīng)與質(zhì)量保證合同
- 2024年工程材料檢測合同
- 2024年全年合同管理服務(wù)
- 2024年工程招投標(biāo)實(shí)訓(xùn)全程解析
- 2024國際物流與供應(yīng)鏈管理合作協(xié)議
- 2024年屋頂施工技術(shù)合同
- 2024年城市夜景照明設(shè)計(jì)合同
- 2024年大數(shù)據(jù)中心建設(shè)合同管理與數(shù)據(jù)安全
- 2024年官方發(fā)布:房產(chǎn)買賣合同標(biāo)準(zhǔn)格式
- 2024化妝品營銷策劃方案
- 2024-2025學(xué)年高二上學(xué)期期中考試地理試題(含答案) 選擇性必修一第1-3章
- 2024年復(fù)蘇中心建設(shè)與管理急診專家共識
- 山東省濟(jì)南市章丘區(qū)2023-2024學(xué)年三年級上學(xué)期語文11月期中試卷
- 中國中煤華東分公司招聘筆試題庫2024
- 炎德英才大聯(lián)考2025屆高三第二次模擬考試物理試卷含解析
- 幼兒園中班社會(huì)《兔子先生去散步》課件
- 人教課標(biāo)解析新時(shí)代教育理念
- 2023年12月英語四級真題及答案-第2套
- 品牌授權(quán)收費(fèi)合同模板
- DB41-T 2689-2024 水利工程施工圖設(shè)計(jì)文件編制規(guī)范
評論
0/150
提交評論