版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-.z.數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)一、直線與方程〔1〕直線的傾斜角定義:*軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與*軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°〔2〕直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在。②過(guò)兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到?!?〕直線方程①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于*1,所以它的方程是*=*1。②斜截式:,直線斜率為k,直線在y軸上的截距為b③兩點(diǎn)式:〔〕直線兩點(diǎn),④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。⑤一般式:〔A,B不全為0〕注意:eq\o\ac(○,1)各式的適用范圍eq\o\ac(○,2)特殊的方程如:平行于*軸的直線:〔b為常數(shù)〕;平行于y軸的直線:〔a為常數(shù)〕;〔5〕直線系方程:即具有*一共同性質(zhì)的直線〔一〕平行直線系平行于直線〔是不全為0的常數(shù)〕的直線系:〔C為常數(shù)〕〔二〕過(guò)定點(diǎn)的直線系〔ⅰ〕斜率為k的直線系:,直線過(guò)定點(diǎn);〔ⅱ〕過(guò)兩條直線,的交點(diǎn)的直線系方程為〔為參數(shù)〕,其中直線不在直線系中。〔6〕兩直線平行與垂直當(dāng),時(shí),;注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否?!?〕兩條直線的交點(diǎn)相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解;方程組有無(wú)數(shù)解與重合〔8〕兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則〔9〕點(diǎn)到直線距離公式:一點(diǎn)到直線的距離〔10〕兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)展求解。二、圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。2、圓的方程〔1〕標(biāo)準(zhǔn)方程,圓心,半徑為r;〔2〕一般方程當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形?!?〕求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,假設(shè)利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;假設(shè)利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況,根本上由以下兩種方法判斷:〔1〕設(shè)直線,圓,圓心到l的距離為,則有;;〔2〕設(shè)直線,圓,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為,則有;;注:如果圓心的位置在原點(diǎn),可使用公式去解直線與圓相切的問(wèn)題,其中表示切點(diǎn)坐標(biāo),r表示半徑。(3)過(guò)圓上一點(diǎn)的切線方程:①圓*2+y2=r2,圓上一點(diǎn)為(*0,y0),則過(guò)此點(diǎn)的切線方程為(課本命題).②圓(*-a)2+(y-b)2=r2,圓上一點(diǎn)為(*0,y0),則過(guò)此點(diǎn)的切線方程為(*0-a)(*-a)+(y0-b)(y-b)=r2(課本命題的推廣).4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和〔差〕,與圓心距〔d〕之間的大小比擬來(lái)確定。設(shè)圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和〔差〕,與圓心距〔d〕之間的大小比擬來(lái)確定。當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。三、立體幾何初步1、柱、錐、臺(tái)、球的構(gòu)造特征〔1〕棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形?!?〕棱錐定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。〔3〕棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的局部分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等表示:用各頂點(diǎn)字母,如五棱臺(tái)幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)〔4〕圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形?!?〕圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形?!?〕圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的局部幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形?!?〕球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖〔光線從幾何體的前面向后面正投影〕;側(cè)視圖〔從左向右〕、俯視圖〔從上向下〕注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。3、空間幾何體的直觀圖——斜二測(cè)畫法斜二測(cè)畫法特點(diǎn):①原來(lái)與*軸平行的線段仍然與*平行且長(zhǎng)度不變;②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。4、柱體、錐體、臺(tái)體的外表積與體積〔1〕幾何體的外表積為幾何體各個(gè)面的面積的和?!?〕特殊幾何體外表積公式〔c為底面周長(zhǎng),h為高,為斜高,l為母線〕〔3〕柱體、錐體、臺(tái)體的體積公式〔4〕球體的外表積和體積公式:V=;S=4、空間點(diǎn)、直線、平面的位置關(guān)系〔1〕平面①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;②平面的表示:通常用希臘字母α、β、γ表示,如平面α〔通常寫在一個(gè)銳角內(nèi)〕;也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面,記作;點(diǎn)不在平面,記作點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作Al;直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα?!?〕公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),則這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。〔即直線在平面內(nèi),或者平面經(jīng)過(guò)直線〕應(yīng)用:檢驗(yàn)桌面是否平;判斷直線是否在平面內(nèi)用符號(hào)語(yǔ)言表示公理1:〔3〕公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)〔4〕公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),則它們有且只有一條過(guò)該點(diǎn)的公共直線符號(hào):平面α和β相交,交線是a,記作α∩β=a。符號(hào)語(yǔ)言:公理3的作用:①它是判定兩個(gè)平面相交的方法。②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線上,即證假設(shè)干個(gè)點(diǎn)共線的重要依據(jù)?!?〕公理4:平行于同一條直線的兩條直線互相平行〔6〕空間直線與直線之間的位置關(guān)系①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線④異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角〔或直角〕叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是〔0°,90°],假設(shè)兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。說(shuō)明:〔1〕判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理〔2〕在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線所成角步驟:A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到*個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角〔7〕等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,則這兩角相等或互補(bǔ)?!?〕空間直線與平面之間的位置關(guān)系直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α〔9〕平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α∥β相交——有一條公共直線。α∩β=b5、空間中的平行問(wèn)題〔1〕直線與平面平行的判定及其性質(zhì)線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行線面平行的性質(zhì)定理:線面平行線線平行〔2〕平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理〔1〕如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,則這兩個(gè)平面平行〔線面平行→面面平行〕,〔2〕如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,則這兩個(gè)平面平行?!簿€線平行→面面平行〕,〔3〕垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理〔1〕如果兩個(gè)平面平行,則*一個(gè)平面內(nèi)的直線與另一個(gè)平面平行?!裁婷嫫叫小€面平行〕〔2〕如果兩個(gè)平行平面都和第三個(gè)平面相交,則它們的交線平行?!裁婷嫫叫小€線平行〕7、空間中的垂直問(wèn)題〔1〕線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角〔從一條直線出發(fā)的兩個(gè)半平面所組成的圖形〕是直二面角〔平面角是直角〕,就說(shuō)這兩個(gè)平面垂直?!?〕垂直關(guān)系的判定和性質(zhì)定理①線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,則這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,則這兩條直線平行。②面面垂直的判定定理和性質(zhì)定理判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面互相垂直。性質(zhì)定理:如果兩個(gè)平面互相垂直,則在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。9、空間角問(wèn)題〔1〕直線與直線所成的角①兩平行直線所成的角:規(guī)定為。②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角?!?〕直線和平面所成的角①平面的平行線與平面所成的角:規(guī)定為。②平面的垂線與平面所成的角:規(guī)定為。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。求斜線與平面所成角的思路類似于求異面直線所成角:"一作,二證,三計(jì)算〞。在"作角〞時(shí)依定義關(guān)鍵作射
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道路景觀設(shè)施承諾書
- 煙草產(chǎn)品收款流程
- 印刷廠門窗施工合同協(xié)議書
- 健身房墻面裝修合同協(xié)議
- 可持續(xù)發(fā)展成品油市場(chǎng)管理辦法
- 基坑降水施工合同:文物保護(hù)工程
- 廣告公司合同管理方案
- 建筑公司工程車輛司機(jī)聘用合同
- 通信設(shè)備維護(hù)服務(wù)合同
- 流行病的特征
- 巴金名著導(dǎo)讀《十年一夢(mèng)》
- 項(xiàng)目申報(bào)書(模板)(高校)
- 教科版五年級(jí)科學(xué)上冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 三只松鼠客戶關(guān)系管理
- XX電站接地裝置的熱穩(wěn)定校驗(yàn)報(bào)告(220kV)
- 2024年山東地區(qū)光明電力服務(wù)公司第二批招聘高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 涉警輿情培訓(xùn)課件模板
- 馬戲團(tuán)活動(dòng)方案
- 《預(yù)防踩踏》課件
- 人教版四年級(jí)上下冊(cè)英語(yǔ)單詞默寫表(漢譯英)
- 小學(xué)關(guān)工委制度范本
評(píng)論
0/150
提交評(píng)論