版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.43.已知全集,函數(shù)的定義域?yàn)椋?,則下列結(jié)論正確的是A. B.C. D.4.已知角的終邊經(jīng)過(guò)點(diǎn)P(),則sin()=A. B. C. D.5.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,6.已知數(shù)列對(duì)任意的有成立,若,則等于()A. B. C. D.7.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i8.已知函數(shù)(,,),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知曲線,動(dòng)點(diǎn)在直線上,過(guò)點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.10.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.11.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.912.已知函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù),滿足約束條件,則的最大值為_(kāi)_________.14.過(guò)直線上一動(dòng)點(diǎn)向圓引兩條切線MA,MB,切點(diǎn)為A,B,若,則四邊形MACB的最小面積的概率為_(kāi)_______.15.《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為_(kāi)_________.16.已知,,其中,為正的常數(shù),且,則的值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:的離心率為,右焦點(diǎn)為拋物線的焦點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)為坐標(biāo)原點(diǎn),過(guò)作兩條射線,分別交橢圓于、兩點(diǎn),若、斜率之積為,求證:的面積為定值.18.(12分)第十四屆全國(guó)冬季運(yùn)動(dòng)會(huì)召開(kāi)期間,某校舉行了“冰上運(yùn)動(dòng)知識(shí)競(jìng)賽”,為了解本次競(jìng)賽成績(jī)情況,從中隨機(jī)抽取部分學(xué)生的成績(jī)(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問(wèn)題:(1)求、、的值及隨機(jī)抽取一考生其成績(jī)不低于70分的概率;(2)若從成績(jī)較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識(shí)”志愿活動(dòng),并指定2名負(fù)責(zé)人,求從第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的概率.組號(hào)分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計(jì)1.0019.(12分)已知橢圓C的離心率為且經(jīng)過(guò)點(diǎn)(1)求橢圓C的方程;(2)過(guò)點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.20.(12分)如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點(diǎn),滿足,求二面角的余弦值.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.22.(10分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時(shí),,求實(shí)數(shù);⑶試問(wèn)的值是否與的大小無(wú)關(guān),并證明你的結(jié)論.
2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【答案解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【題目詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【答案點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.2、D【答案解析】可以是共4個(gè),選D.3、A【答案解析】
求函數(shù)定義域得集合M,N后,再判斷.【題目詳解】由題意,,∴.故選A.【答案點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.4、A【答案解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).5、D【答案解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【題目詳解】因?yàn)椋?,是全稱命題,所以其否定是特稱命題,即,.故選:D【答案點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.6、B【答案解析】
觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【題目詳解】已知,則,所以有,,,,兩邊同時(shí)相加得,又因?yàn)椋?故選:【答案點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.7、B【答案解析】
復(fù)數(shù)為純虛數(shù),則實(shí)部為0,虛部不為0,求出,即得.【題目詳解】∵為純虛數(shù),∴,解得..故選:.【答案點(diǎn)睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.8、B【答案解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識(shí)得到的解析式,然后分別找出和的等價(jià)條件,即可根據(jù)充分條件,必要條件的定義求出.【題目詳解】設(shè),根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【答案點(diǎn)睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應(yīng)用,充分條件,必要條件的定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于中檔題.9、C【答案解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【題目詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線上,所以直線的方程為,恒過(guò)定點(diǎn),即直線過(guò)圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【答案點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.10、B【答案解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.11、D【答案解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【題目詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【答案點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、A【答案解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【題目詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【答案點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、10【答案解析】
畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【題目詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過(guò)點(diǎn)時(shí),截距最小,最大解得的最大值為10故答案為:10【答案點(diǎn)睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.14、.【答案解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長(zhǎng)的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【題目詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時(shí)最小為圓心到直線的距離,此時(shí),因?yàn)?,所以,所以的概率為.【答案點(diǎn)睛】本題考查直線與圓的位置關(guān)系,及與長(zhǎng)度有關(guān)的幾何概型,考查了學(xué)生分析問(wèn)題的能力,難度一般.15、【答案解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時(shí),△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【題目詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時(shí),取“=”,此時(shí)△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【答案點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時(shí)考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.16、【答案解析】
把已知等式變形,展開(kāi)兩角和與差的三角函數(shù),結(jié)合已知求得值.【題目詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【答案點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【答案解析】
(1)由條件可得,再根據(jù)離心率可求得,則可得橢圓方程;(2)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:,與橢圓聯(lián)立求得的坐標(biāo),通過(guò)、斜率之積為列方程可得的值,進(jìn)而可得的面積;當(dāng)與軸不垂直時(shí),設(shè),,的方程為,與橢圓方程聯(lián)立,利用韋達(dá)定理和、斜率之積為可得,再利用弦長(zhǎng)公式求出,以及到的距離,通過(guò)三角形的面積公式求解.【題目詳解】(1)拋物線的焦點(diǎn)為,,,,,,橢圓方程為;(2)(ⅰ)當(dāng)與軸垂直時(shí),設(shè)直線的方程為:代入得:,,,解得:,;(ⅱ)當(dāng)與軸不垂直時(shí),設(shè),,的方程為由,由①,,,即整理得:代入①得:到的距離綜上:為定值.【答案點(diǎn)睛】本題考查橢圓方程的求解,考查直線和橢圓的位置關(guān)系,考查韋達(dá)定理的應(yīng)用,考查了學(xué)生的計(jì)算能力,是中檔題.18、(1),,,;(2)【答案解析】
(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進(jìn)而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對(duì)抽出的5人編號(hào),列出所有2名負(fù)責(zé)人的抽取方法,得出第4組抽取的學(xué)生中至少有一名是負(fù)責(zé)人的抽法數(shù),由古典概型概率公式,即可求解.【題目詳解】(1),,,由頻率分布表可得成績(jī)不低于70分的概率約為:(2)因?yàn)榈?、4、5組共有50名學(xué)生,所以利用分層抽樣在50名學(xué)生中抽取5名學(xué)生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設(shè)第3組的3位同學(xué)為、,第4組的2位同學(xué)為、,第5組的1位同學(xué)為,則從五位同學(xué)中抽兩位同學(xué)有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學(xué)、至少有一位同學(xué)是負(fù)責(zé)人有7種抽法,故所求的概率為.【答案點(diǎn)睛】本題考查補(bǔ)全頻率分布表、古典概型的概率,屬于基礎(chǔ)題.19、(1)(2)【答案解析】
(1)根據(jù)橢圓的離心率、橢圓上點(diǎn)的坐標(biāo)以及列方程,由此求得,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點(diǎn)的坐標(biāo),將的坐標(biāo)代入橢圓方程,化簡(jiǎn)后可求得直線的斜率,由此求得直線的方程.【題目詳解】(1)由橢圓的離心率為,點(diǎn)在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點(diǎn)都在橢圓上,所以,展開(kāi)有,又,所以,經(jīng)檢驗(yàn)滿足,故直線的方程為.【答案點(diǎn)睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點(diǎn)的坐標(biāo)求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.20、(1)證明見(jiàn)解析(2)(3)【答案解析】
(1)根據(jù)題意以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并表示出,由空間向量數(shù)量積運(yùn)算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點(diǎn)在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運(yùn)算求得兩個(gè)平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【題目詳解】(1)證明:∵底面,,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,∵,,點(diǎn)為棱的中點(diǎn).∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點(diǎn)在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【答案點(diǎn)睛】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年茶葉收購(gòu)與倉(cāng)儲(chǔ)管理合同2篇
- 水電安裝工程2025年度合同書協(xié)議2篇
- 二零二五版快遞物流服務(wù)質(zhì)量監(jiān)控與評(píng)估協(xié)議合同2篇
- 二零二五年電子供應(yīng)鏈采購(gòu)合同3篇
- 二零二五年度校園巴士運(yùn)營(yíng)管理合同范本3篇
- 二零二五年高端餐飲會(huì)所租賃承包合同范本3篇
- 2025年危險(xiǎn)品運(yùn)輸及應(yīng)急處理合同3篇
- 二零二五版物流倉(cāng)儲(chǔ)與新能源利用合同3篇
- 小學(xué)教師事業(yè)單位聘用合同(2篇)
- 二零二五年度綠色交通PPP特許經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同3篇
- 2024年云南省中考數(shù)學(xué)試題含答案解析
- 《火災(zāi)調(diào)查 第2版》 課件全套 劉玲 第1-12章 緒論、詢問(wèn) -火災(zāi)物證鑒定
- 汽車修理廠管理方案
- 借用他人名義買車協(xié)議完整版
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 校園超市經(jīng)營(yíng)投標(biāo)方案(技術(shù)方案)
- 基于Web服務(wù)的辦公系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)的開(kāi)題報(bào)告
- 國(guó)企工程類工作總結(jié)
- 電腦教室設(shè)計(jì)方案
- 計(jì)算機(jī)江蘇對(duì)口單招文化綜合理論試卷
- 高速公路環(huán)保水保方案
評(píng)論
0/150
提交評(píng)論