版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)學中的數(shù)形結合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的結合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經(jīng)過5個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④2.若復數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.43.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.4.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.45.過拋物線的焦點的直線交該拋物線于,兩點,為坐標原點.若,則直線的斜率為()A. B. C. D.6.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或7.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.8.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.9.已知隨機變量服從正態(tài)分布,,()A. B. C. D.10.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.11.已知變量的幾組取值如下表:12347若與線性相關,且,則實數(shù)()A. B. C. D.12.已知函數(shù)(,,),將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某校高三年級共有名學生參加了數(shù)學測驗(滿分分),已知這名學生的數(shù)學成績均不低于分,將這名學生的數(shù)學成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學生中數(shù)學成績在分以下的人數(shù)為;③這名學生數(shù)學成績的中位數(shù)約為;④這名學生數(shù)學成績的平均數(shù)為.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.若關于的不等式在上恒成立,則的最大值為__________.16.已知三棱錐的四個頂點在球的球面上,,是邊長為2的正三角形,,則球的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.18.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)19.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.20.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.22.(10分)已知函數(shù).(1)當(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導函數(shù),當,時,求證:.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【題目詳解】,解得(當且僅當時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【答案點睛】本題考查曲線與方程的應用,根據(jù)方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.2、B【答案解析】
根據(jù)復數(shù)的幾何意義可知復數(shù)對應的點在以原點為圓心,1為半徑的圓上,再根據(jù)復數(shù)的幾何意義即可確定,即可得的最大值.【題目詳解】由知,復數(shù)對應的點在以原點為圓心,1為半徑的圓上,表示復數(shù)對應的點與點間的距離,又復數(shù)對應的點所在圓的圓心到的距離為1,所以.故選:B【答案點睛】本題考查了復數(shù)模的定義及其幾何意義應用,屬于基礎題.3、C【答案解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結論.【題目詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【答案點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎題.4、D【答案解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【題目詳解】設等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【答案點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.5、D【答案解析】
根據(jù)拋物線的定義,結合,求出的坐標,然后求出的斜率即可.【題目詳解】解:拋物線的焦點,準線方程為,設,則,故,此時,即.則直線的斜率.故選:D.【答案點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.6、D【答案解析】
由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【題目詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【答案點睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質建立方程求q是解題的關鍵,對于等比數(shù)列的通項公式也要熟練.7、C【答案解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數(shù)列前項和中最小的.【題目詳解】解:等差數(shù)列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數(shù)列前項和中最小的是.故選:C.【答案點睛】本題主要考查等差數(shù)列的性質,等差數(shù)列的通項公式的應用,屬于中檔題.8、B【答案解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【題目詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內(nèi)切圓的半徑為,則,故選:B【答案點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內(nèi)心的概念,考查了轉化的思想,屬于中檔題.9、B【答案解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【題目詳解】,所以,.故選:B.【答案點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.10、D【答案解析】
根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結果.【題目詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【答案點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.11、B【答案解析】
求出,把坐標代入方程可求得.【題目詳解】據(jù)題意,得,所以,所以.故選:B.【答案點睛】本題考查線性回歸直線方程,由性質線性回歸直線一定過中心點可計算參數(shù)值.12、B【答案解析】
先根據(jù)圖象求出函數(shù)的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據(jù)充分條件,必要條件的定義求出.【題目詳解】設,根據(jù)圖象可知,,再由,取,∴.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【答案點睛】本題主要考查利用圖象求正(余)弦型函數(shù)的解析式,三角函數(shù)的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數(shù)學運算能力和邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【答案解析】
由頻率分布直方圖可知,解得,故①不正確;這名學生中數(shù)學成績在分以下的人數(shù)為,故②正確;設這名學生數(shù)學成績的中位數(shù)為,則,解得,故③正確;④這名學生數(shù)學成績的平均數(shù)為,故④不正確.綜上,說法正確的序號是②③.14、【答案解析】
取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【題目詳解】如圖:設,又,且存在實數(shù)使得,,,,,,故答案為:.【答案點睛】本題考查了平面向量數(shù)量積的性質及其運算,屬中檔題.15、【答案解析】
分類討論,時不合題意;時求導,求出函數(shù)的單調區(qū)間,得到在上的最小值,利用不等式恒成立轉化為函數(shù)最小值,化簡得,構造放縮函數(shù)對自變量再研究,可解,【題目詳解】令;當時,,不合題意;當時,,令,得或,所以在區(qū)間和上單調遞減.因為,且在區(qū)間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【答案點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數(shù))對任意的恒成立,求參數(shù)的取值范圍.利用導數(shù)解決此類問題可以運用分離參數(shù)法;如果無法分離參數(shù),可以考慮對參數(shù)或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(,或,)求解.16、【答案解析】
由題意可得三棱錐的三條側棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【題目詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【答案點睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.18、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【答案解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結果,判斷至少增加2人.【題目詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【答案點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.19、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【答案解析】
(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【題目詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【答案點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.20、(1)(2)的最小值為1,此時直線:【答案解析】
(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯(lián)立,消元并整理得,設,,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計算,設.顯然,構造,由導數(shù)的知識求得其最小值,同時可得直線的方程.【題目詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯(lián)立,得即設,,則,將直線:與聯(lián)立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版KTV會員積分兌換與消費激勵合同3篇
- 二零二五版無形資產(chǎn)抵押融資合同3篇
- 物業(yè)開發(fā)商2025年度交付合同3篇
- 二零二五年度綠色建筑節(jié)能材料研發(fā)合同gf02094篇
- 2025年度不銹鋼水箱及配件批發(fā)采購合同模板2篇
- 二零二五年度股權代持合同:涉公司清算與資產(chǎn)分配協(xié)議3篇
- 2024網(wǎng)絡紅人與品牌代言合同
- 2025版新能源汽車銷售服務合同范本4篇
- 2025年度高端酒店食材采購及質量控制合同3篇
- 全日制學術學位
- 2024版塑料購銷合同范本買賣
- 【高一上】【期末話收獲 家校話未來】期末家長會
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 有毒有害氣體崗位操作規(guī)程(3篇)
- 兒童常見呼吸系統(tǒng)疾病免疫調節(jié)劑合理使用專家共識2024(全文)
- 2025屆山東省德州市物理高三第一學期期末調研模擬試題含解析
- 《華潤集團全面預算管理案例研究》
- 2024-2025高考英語全國卷分類匯編之完型填空(含答案及解析)
- 二年級下冊加減混合豎式練習360題附答案
- 蘇教版五年級數(shù)學下冊解方程五種類型50題
評論
0/150
提交評論