版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一次函數(shù)知識點總結基本概念1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。例題:在勻速運動公式中,表示速度,表示時間,表示在時間內(nèi)所走的路程,則變量是________,常量是_______.在圓的周長公式C=2πr中,變量是________,常量是_________.2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應例3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。4、確定函數(shù)定義域的方法:(1)關系式為整式時,函數(shù)定義域為全體實數(shù);(2)關系式含有分式時,分式的分母不等于零;(3)關系式含有二次根式時,被開放方數(shù)大于等于零;(4)關系式中含有指數(shù)為零的式子時,底數(shù)不等于零;(5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。例題:下列函數(shù)中,自變量x的取值范圍是x≥2的是()A.y=B.y=C.y=D.y=·函數(shù)中自變量x的取值范圍是___________.已知函數(shù),當時,y的取值范圍是()A.B.C.D.5、函數(shù)的圖像一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點法畫函數(shù)圖形的一般步驟第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。8、函數(shù)的表示方法列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。9、正比例函數(shù)及性質(zhì)一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)=1\*GB3①k不為零=2\*GB3②x指數(shù)為1=3\*GB3③b取零當k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸例題:.正比例函數(shù),當m時,y隨x的增大而增大.若是正比例函數(shù),則b的值是()A.0B.C.D..函數(shù)y=(k-1)x,y隨x增大而減小,則k的范圍是()A.B.C.D.東方超市鮮雞蛋每個0.4元,那么所付款y元與買鮮雞蛋個數(shù)x(個)之間的函數(shù)關系式是_______________.平行四邊形相鄰的兩邊長為x、y,周長是30,則y與x的函數(shù)關系式是__________.10、一次函數(shù)及性質(zhì)一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).注:一次函數(shù)一般形式y(tǒng)=kx+b(k不為零)=1\*GB3①k不為零=2\*GB3②x指數(shù)為1=3\*GB3③b取任意實數(shù)一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)(1)解析式:y=kx+b(k、b是常數(shù),k0)(2)必過點:(0,b)和(-,0)(3)走向:k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限直線經(jīng)過第一、二、三象限直線經(jīng)過第一、三、四象限直線經(jīng)過第一、二、四象限直線經(jīng)過第二、三、四象限(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小.(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.(6)圖像的平移:當b>0時,將直線y=kx的圖象向上平移b個單位;當b<0時,將直線y=kx的圖象向下平移b個單位.例題:若關于x的函數(shù)是一次函數(shù),則m=,n..函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內(nèi)的大致位置正確的是()將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.11、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),.即橫坐標或縱坐標為0的點.b>0b<0b=0k>0經(jīng)過第一、二、三象限經(jīng)過第一、三、四象限經(jīng)過第一、三象限圖象從左到右上升,y隨x的增大而增大k<0經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限圖象從左到右下降,y隨x的增大而減小若m<0,n>0,則一次函數(shù)y=mx+n的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限12、正比例函數(shù)與一次函數(shù)圖象之間的關系一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).13、直線y=k1x+b1與y=k2x+b2的位置關系(1)兩直線平行:k1=k2且b1b2(2)兩直線相交:k1k2(3)兩直線重合:k1=k2且b1=b214、用待定系數(shù)法確定函數(shù)解析式的一般步驟:(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關系式;(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數(shù)關系式中得到以待定系數(shù)為未知數(shù)的方程;(3)解方程得出未知系數(shù)的值;(4)將求出的待定系數(shù)代回所求的函數(shù)關系式中得出所求函數(shù)的解析式.15、一元一次方程與一次函數(shù)的關系任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.16、一次函數(shù)與一元一次不等式的關系任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當一次函數(shù)值大(?。┯?時,求自變量的取值范圍.一次函數(shù)基本題型題型一、點的坐標方法:x軸上的點縱坐標為0,y軸上的點橫坐標為0;若兩個點關于x軸對稱,則他們的橫坐標相同,縱坐標互為相反數(shù);若兩個點關于y軸對稱,則它們的縱坐標相同,橫坐標互為相反數(shù);若兩個點關于原點對稱,則它們的橫坐標互為相反數(shù),縱坐標也互為相反數(shù);若點A(m,n)在第二象限,則點(|m|,-n)在第____象限;若點P(2a-1,2-3b)是第二象限的點,則a,b的范圍為______________________;已知A(4,b),B(a,-2),若A,B關于x軸對稱,則a=_______,b=_________;若A,B關于y軸對稱,則a=_______,b=__________;若若A,B關于原點對稱,則a=_______,b=_________;若點M(1-x,1-y)在第二象限,那么點N(1-x,y-1)關于原點的對稱點在第______象限。題型二、關于點的距離的問題方法:點到x軸的距離用縱坐標的絕對值表示,點到y(tǒng)軸的距離用橫坐標的絕對值表示;點到原點之間的距離為點B(2,-2)到x軸的距離是_________;到y(tǒng)軸的距離是____________;點C(0,-5)到x軸的距離是_________;到y(tǒng)軸的距離是____________;到原點的距離是____________;點D(a,b)到x軸的距離是_________;到y(tǒng)軸的距離是____________;到原點的距離是____________;已知點P(3,0),Q(-2,0),則PQ=__________,,則EF兩點之間的距離是__________;兩點(3,-4)、(5,a)間的距離是2,則a的值為__________;題型三、一次函數(shù)與正比例函數(shù)的識別方法:若y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù),特別的,當b=0時,一次函數(shù)就成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù),當k=0時,一次函數(shù)就成為若y=b,這時,y叫做常函數(shù)?!預與B成正比例A=kB(k≠0)1、當k_____________時,是一次函數(shù);2、當m_____________時,是一次函數(shù);3、當m_____________時,是一次函數(shù);題型四、函數(shù)圖像及其性質(zhì)方法:函數(shù)圖象性質(zhì)經(jīng)過象限變化規(guī)律y=kx+b(k、b為常數(shù),且k≠0)k>0b>0b=0b<0k<0b>0b=0b<0☆一次函數(shù)y=kx+b(k≠0)中k、b的意義:k(稱為斜率)表示直線y=kx+b(k≠0)的傾斜程度;b(稱為截距)表示直線y=kx+b(k≠0)與y軸交點的,也表示直線在y軸上的?!钔黄矫鎯?nèi),不重合的兩直線y=k1x+b1(k1≠0)與y=k2x+b2(k2≠0)的位置關系:當時,兩直線平行。當時,兩直線垂直。當時,兩直線相交。當時,兩直線交于y軸上同一點?!钐厥庵本€方程:X軸:直線Y軸:直線與X軸平行的直線與Y軸平行的直線三象限角平分線二、四象限角平分線1、對于函數(shù)y=5x+6,y的值隨x值的減小而___________。2、對于函數(shù),y的值隨x值的________而增大。3、一次函數(shù)y=(6-3m)x+(2n-4)不經(jīng)過第三象限,則m、n的范圍是__________。4、已知直線y=kx+b經(jīng)過第一、二、四象限,那么直線y=-bx+k經(jīng)過第_______象限。5、無論m為何值,直線y=x+2m與直線y=-x+4的交點不可能在第______象限。6、已知一次函數(shù)
(1)當m取何值時,y隨x的增大而減小?
(2)當m取何值時,函數(shù)的圖象過原點?題型五、待定系數(shù)法求解析式方法:依據(jù)兩個獨立的條件確定k,b的值,即可求解出一次函數(shù)y=kx+b(k≠0)的解析式。已知是直線或一次函數(shù)可以設y=kx+b(k≠0);若點在直線上,則可以將點的坐標代入解析式構建方程。1、若函數(shù)y=3x+b經(jīng)過點(2,-6),求函數(shù)的解析式。2、直線y=kx+b的圖像經(jīng)過A(3,4)和點B(2,7),3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時間x(小時)之間的關系.求油箱里所剩油y(升)與行駛時間x(小時)之間的函數(shù)關系式,并且確定自變量x的取值范圍。4、一次函數(shù)的圖像與y=2x-5平行且與x軸交于點(-2,0)求解析式。5、若一次函數(shù)y=kx+b的自變量x的取值范圍是-2≤x≤6,相應的函數(shù)值的范圍是-11≤y≤9,求此函數(shù)的解析式。6、已知直線y=kx+b與直線y=-3x+7關于y軸對稱,求k、b的值。題型六、平移方法:直線y=kx+b與y軸交點為(0,b),直線平移則直線上的點(0,b)也會同樣的平移,平移不改變斜率k,則將平移后的點代入解析式求出b即可。直線y=kx+b向左平移2向上平移3<=>y=k(x+2)+b+3;(“左加右減,上加下減”)。1.直線y=5x-3向左平移2個單位得到直線。2.直線y=-x-2向右平移2個單位得到直線3.直線y=x向右平移2個單位得到直線4.直線y=向左平移2個單位得到直線5.直線y=2x+1向上平移4個單位得到直線6.直線y=-3x+5向下平移6個單位得到直線7.直線向上平移1個單位,再向右平移1個單位得到直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村宅基地合同范本(2篇)
- 初次出國旅游合同
- 浙江省杭州市江干區(qū)重點達標名校2025屆中考五模生物試題含解析
- 2025關于道路勘察設計的合同
- 2024年度天津市公共營養(yǎng)師之二級營養(yǎng)師提升訓練試卷A卷附答案
- 2025民間個人借款擔保合同
- 2025年中國美容會所行業(yè)市場全景調(diào)研及投資規(guī)劃建議報告
- 2024-2030年中國聲樂器樂培訓行業(yè)發(fā)展運行現(xiàn)狀及投資潛力預測報告
- 2025年化工廠生產(chǎn)實習報告4-1
- 2023-2029年中國球衣行業(yè)市場發(fā)展現(xiàn)狀及投資規(guī)劃建議報告
- 外來人員車輛入廠安全須知
- 01S201室外消火栓安裝圖集
- 浪潮入職培訓考試題目
- B2C網(wǎng)絡商店物流服務質(zhì)量及其與顧客忠誠的關系研究的中期報告
- 年同等學歷考研申碩綜合科復習指導(教育心理學)課件
- 線段角動點問題
- 劍橋英語PET真題校園版
- 【課件】沉心靜氣打贏最后一仗 課件-2022-2023學年高中主題班會
- 2021傳播心理學課程教學大綱
- HSk-lesson07part2-第-七-課-最好的醫(yī)生是自己
- 抖音直播電商項目計劃書抖音電商創(chuàng)業(yè)商業(yè)計劃書抖音直播帶貨計劃書抖音電商運營方案
評論
0/150
提交評論