2022年新疆維吾爾自治區(qū)阿克蘇地區(qū)庫車縣九年級數(shù)學上冊期末教學質(zhì)量檢測模擬試題含解析_第1頁
2022年新疆維吾爾自治區(qū)阿克蘇地區(qū)庫車縣九年級數(shù)學上冊期末教學質(zhì)量檢測模擬試題含解析_第2頁
2022年新疆維吾爾自治區(qū)阿克蘇地區(qū)庫車縣九年級數(shù)學上冊期末教學質(zhì)量檢測模擬試題含解析_第3頁
2022年新疆維吾爾自治區(qū)阿克蘇地區(qū)庫車縣九年級數(shù)學上冊期末教學質(zhì)量檢測模擬試題含解析_第4頁
2022年新疆維吾爾自治區(qū)阿克蘇地區(qū)庫車縣九年級數(shù)學上冊期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知三地順次在同-直線上,甲、乙兩人均騎車從地出發(fā),向地勻速行駛.甲比乙早出發(fā)分鐘;甲到達地并休息了分鐘后,乙追上了甲.甲、乙同時從地以各自原速繼續(xù)向地行駛.當乙到達地后,乙立即掉頭并提速為原速的倍按原路返回地,而甲也立即提速為原速的二倍繼續(xù)向地行駛,到達地就停止.若甲、乙間的距離(米)與甲出發(fā)的時間(分)之間的函數(shù)關系如圖所示,則下列說法錯誤的是()A.甲、乙提速前的速度分別為米/分、米/分.B.兩地相距米C.甲從地到地共用時分鐘D.當甲到達地時,乙距地米2.如圖,在圓內(nèi)接四邊形ABCD中,∠A:∠C=1:2,則∠A的度數(shù)等于()A.30° B.45° C.60° D.80°3.從口袋中隨機摸出一球,再放回口袋中,不斷重復上述過程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10個和若干個白球,由此估計口袋中大約有多少個白球()A.10個 B.20個 C.30個 D.無法確定4.已知關于的二次函數(shù)的圖象在軸上方,并且關于的分式方程有整數(shù)解,則同時滿足兩個條件的整數(shù)值個數(shù)有().A.2個 B.3個 C.4個 D.5個5.如圖,在⊙O中,已知∠OAB=22.5°,則∠C的度數(shù)為()A.135° B.122.5° C.115.5° D.112.5°6.已知二次函數(shù)y=﹣2x2﹣4x+1,當﹣3≤x≤2時,則函數(shù)值y的最小值為()A.﹣15 B.﹣5 C.1 D.37.下列汽車標志中,是中心對稱圖形的有()個.A.1 B.2 C.3 D.48.如圖,反比例函數(shù)在第二象限的圖象上有兩點A、B,它們的橫坐標分別為-1,-3.直線AB與x軸交于點C,則△AOC的面積為()A.8 B.10 C.12 D.249.在平面直角坐標系中,點(-2,6)關于原點對稱的點的坐標是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)10.已知,二次函數(shù)y=ax2+bx+c的圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)二、填空題(每小題3分,共24分)11.如圖,某數(shù)學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.12.如圖,的直徑垂直弦于點,且,,則弦__________.13.高為7米的旗桿在水平地面上的影子長為5米,同一時刻測得附近一個建筑物的影子長30米,則此建筑物的高度為_____米.14.已知拋物線y=(1﹣3m)x2﹣2x﹣1的開口向上,設關于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的兩根分別為x1、x2,若﹣1<x1<0,x2>2,則m的取值范圍為_____.15.如圖,正六邊形ABCDEF內(nèi)接于O,點M是邊CD的中點,連結AM,若圓O的半徑為2,則AM=____________.16.從實數(shù)中,任取兩個數(shù),正好都是無理數(shù)的概率為________.17.已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.18.如圖在圓心角為的扇形中,半徑,以為直徑作半圓.過點作的平行線交兩弧分別于點,則圖中陰影部分的面積是_______.三、解答題(共66分)19.(10分)如圖所示,中,,,將翻折,使得點落到邊上的點處,折痕分別交邊,于點、點,如果,那么______.20.(6分)如圖,在四邊形中,,.點在上,.(1)求證:;(2)若,,,求的長.21.(6分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.22.(8分)已知,關于x的方程(m﹣1)x2+2x﹣2=0為一元二次方程,且有兩個不相等的實數(shù)根,求m的取值范圍.23.(8分)一個不透明的口袋里裝著分別標有數(shù)字,,0,2的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗時把小球攪勻.(1)從中任取一球,求所抽取的數(shù)字恰好為負數(shù)的概率;(2)從中任取一球,將球上的數(shù)字記為,然后把小球放回;再任取一球,將球上的數(shù)字記為,試用畫樹狀圖(或列表法)表示出點所有可能的結果,并求點在直線上的概率.24.(8分)如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數(shù).25.(10分)某汽車銷售公司去年12月份銷售新上市的一種新型低能耗汽車200輛,由于該型汽車的優(yōu)越的經(jīng)濟適用性,銷量快速上升,若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?26.(10分)已知,如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點C作BD的平行線,過點D作AC的平行線,兩線交于點P.①求證:四邊形CODP是菱形.②若AD=6,AC=10,求四邊形CODP的面積.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】設出甲、乙提速前的速度,根據(jù)“乙到達B地追上甲”和“甲、乙同時從B出發(fā),到相距900米”建立二元一次方程組求出速度即可判斷A,然后根據(jù)乙到達C的時間求A、C之間的距離可判斷B,根據(jù)乙到達C時甲距C的距離及此時速度可計算時間判斷C,根據(jù)乙從C返回A時的速度和甲到達C時乙從C出發(fā)的時間即可計算路程判斷出D.【詳解】A.設甲提速前的速度為米/分,乙提速前的速度為米/分,由圖象知,當乙到達B地追上甲時,有:,化簡得:,當甲、乙同時從B地出發(fā),甲、乙間的距離為900米時,有:,化簡得:,解方程組:,得:,故甲提速前的速度為300米/分,乙提速前的速度為400米/分,故選項A正確;B.由圖象知,甲出發(fā)23分鐘后,乙到達C地,則A、C兩地相距為:(米),故選項B正確;C.由圖象知,乙到達C地時,甲距C地900米,這時,甲提速為(米/分),則甲到達C地還需要時間為:(分鐘),所以,甲從A地到C地共用時為:(分鐘),故選項C錯誤;D.由題意知,乙從C返回A時,速度為:(米/分鐘),當甲到達C地時,乙從C出發(fā)了2.25分鐘,此時,乙距A地距離為:(米),故選項D正確.故選:C.【點睛】本題為方程與函數(shù)圖象的綜合應用,正確分析函數(shù)圖象,明確特殊點的意義是解題的關鍵.2、C【分析】設∠A、∠C分別為x、2x,然后根據(jù)圓的內(nèi)接四邊形的性質(zhì)列出方程即可求出結論.【詳解】解:設∠A、∠C分別為x、2x,∵四邊形ABCD是圓內(nèi)接四邊形,∴x+2x=180°,解得,x=60°,即∠A=60°,故選:C.【點睛】此題考查的是圓的內(nèi)接四邊形的性質(zhì),掌握圓的內(nèi)接四邊形的性質(zhì)是解決此題的關鍵.3、B【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設口袋中大約有x個白球,則,解得x=1.經(jīng)檢驗:x=1是原方程的解故選B.4、B【解析】關于的二次函數(shù)的圖象在軸上方,確定出的范圍,根據(jù)分式方程整數(shù)解,確定出的值,即可求解.【詳解】關于的二次函數(shù)的圖象在軸上方,則解得:分式方程去分母得:解得:當時,;當時,(舍去);當時,;當時,;同時滿足兩個條件的整數(shù)值個數(shù)有3個.故選:B.【點睛】考查分式方程的解,二次函數(shù)的圖象與性質(zhì),熟練掌握分式方程以及二次函數(shù)的性質(zhì)是解題的關鍵.5、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如圖,在⊙O取點D,使點D與點O在AB的同側.則.∵∠C與∠D是圓內(nèi)接四邊形的對角,∴∠C=180°﹣∠D=112.5°.故選D.6、A【分析】先將題目中的函數(shù)解析式化為頂點式,然后在根據(jù)二次函數(shù)的性質(zhì)和x的取值范圍,即可解答本題.【詳解】∵二次函數(shù)y=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴該函數(shù)的對稱軸是直線x=﹣1,開口向下,∴當﹣3≤x≤2時,x=2時,該函數(shù)取得最小值,此時y=﹣15,故選:A.【點睛】本題考查二次函數(shù)的最值,解題的關鍵是將二次函數(shù)的一般式利用配方法化成頂點式,求最值時要注意自變量的取值范圍.7、B【分析】根據(jù)中心對稱圖形的概念逐一進行分析即可得.【詳解】第一個圖形是中心對稱圖形;第二個圖形不是中心對稱圖形;第三個圖形是中心對稱圖形;第四個圖形不是中心對稱圖形,故選B.【點睛】本題考查了中心對稱圖形,熟知中心對稱圖形是指一個圖形繞某一個點旋轉180度后能與自身完全重合的圖形是解題的關鍵.8、C【解析】試題分析:x=-1時,y=6,x=-3時,y=2,所以點A(-1,6),點B(-3,2),應用待定系數(shù)法求得直線AB的解析式為y=2x+8,直線AB與x軸的交點C(-4,0),所以OC=4,點A到x軸的距離為6,所以△AOC的面積為=1.故選C.考點:待定系數(shù)法求一次函數(shù)解析式;坐標與圖形.9、A【分析】根據(jù)關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:點A(-2,6)關于原點對稱的點的坐標是(2,-6),

故選:A.【點睛】本題考查了關于原點對稱的點的坐標,利用關于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù)是解題關鍵.10、C【分析】根據(jù)(0,3)、(3,3)兩點求得對稱軸,再利用對稱性解答即可.【詳解】解:∵拋物線y=ax2+bx+c經(jīng)過(0,3)、(3,3)兩點,

∴對稱軸x==1.5;

點(-1,0)關于對稱軸對稱點為(4,0),

因此它的圖象與x軸的另一個交點坐標是(4,0).

故選C.【點睛】本題考查拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.二、填空題(每小題3分,共24分)11、25【解析】試題解析:由題意12、【分析】先根據(jù)題意得出⊙O的半徑,再根據(jù)勾股定理求出BE的長,進而可得出結論.【詳解】連接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5?3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案為:.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.13、1【分析】根據(jù)同一時刻物體的高度與影長成比例解答即可.【詳解】解:設此建筑物的高度為x米,根據(jù)題意得:,解得:x=1.故答案為:1.【點睛】本題考查了平行投影,屬于基礎題型,明確同一時刻物體的高度與影長成比例是解題的關鍵.14、﹣<m<【分析】首先由拋物線開口向上可得:1﹣3m>0,再由1<x1<0可得:2>3m,最后由x2>2可得:1﹣3m<,由以上三點即可求出m的取值范圍.【詳解】∵拋物線y=(1﹣3m)x2﹣2x﹣1的開口向上,∴1﹣3m>0,①∵﹣1<x1<0,∴當x=﹣1時,y>0,即2>3m,②∵x2>2,∴當x=2時,y<0,即1﹣3m<,③由①②③可得:﹣<m<,故答案為:﹣<m<.【點睛】本題考查了拋物線與x軸的交點的問題,解題時應掌握△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.15、【分析】連接AD,過M作MG⊥AD于G,根據(jù)正六邊形的相關性質(zhì),求得AD,MD的值,再根據(jù)∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【詳解】解:連接AD,過M作MG⊥AD于G,則由正六邊形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案為.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),作出輔助線構造直角三角形是解題的關鍵.16、【分析】畫樹狀圖展示所有等可能的結果數(shù),再找出兩次選到的數(shù)都是無理數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:則共有6種等可能的結果,其中兩次選到的數(shù)都是無理數(shù)有()和()2種,所以兩次選到的數(shù)都是無理數(shù)的概率.故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.17、1.【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案為1.【點睛】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.18、【分析】如圖,連接CE,可得AC=CE,由AC是半圓的直徑,可得OA=OC=CE,根據(jù)平行線的性質(zhì)可得∠COE=90°,根據(jù)含30°角的直角三角形的性質(zhì)可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的長,根據(jù)S陰影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【詳解】如圖,連接CE,∵AC=6,AC、CE為扇形ACB的半徑,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圓的直徑,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S陰影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案為:【點睛】本題考查扇形面積、含30°角的直角三角形的性質(zhì)及勾股定理,熟練掌握扇形面積公式并正確作出輔助線是解題關鍵.三、解答題(共66分)19、【分析】設BE=x,則AE=5-x=AF=A′F,CF=6-(5-x)=1+x,依據(jù)△A'CF∽△BCA,可得,即,進而得到.【詳解】解:如圖,由折疊可得,∠AFE=∠A′FE,

∵A′F∥AB,∴∠AEF=∠A′FE,

∴∠AEF=∠AFE,∴AE=AF,

由折疊可得,AF=A′F,

設BE=x,則AE=5-x=AF=A′F,CF=6-(5-x)=1+x,

∵A′F∥AB,∴△A′CF∽△BCA,

∴,即,解得x=,

∴.

故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質(zhì)的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.20、(1)見解析;(2).【分析】(1)由AD∥BC、AB⊥BC可得出∠A=∠B=90°,由等角的余角相等可得出∠ADE=∠BEC,進而即可證出△ADE∽△BEC;

(2)根據(jù)相似三角形的性質(zhì)即可得到結論.【詳解】解:(1)證明:∵AD∥BC,AB⊥BC,

∴AB⊥AD,∠A=∠B=90°,

∴∠ADE+∠AED=90°.

∵∠DEC=90°,

∴∠AED+∠BEC=90°,

∴∠ADE=∠BEC,

∴△ADE∽△BEC;

(2)解:∵△ADE∽△BEC,∴,即,∴BE=.【點睛】本題考查了相似三角形的判定與性質(zhì)以及平行線的性質(zhì),解題的關鍵是:(1)利用相似三角形的判定定理找出△ADE∽△BEC;(2)利用相似三角形的性質(zhì)求出BE的長度.21、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.22、且【分析】由題意根據(jù)判別式的意義得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【詳解】解:根據(jù)題意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得且m≠1,故m的取值范圍是且m≠1.【點睛】本題考查一元二次方程的定義以及一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.23、(1)所抽取的數(shù)字恰好為負數(shù)的概率是;(2)點(x,y)在直線y=﹣x﹣1上的概率是.【分析】(1)四個數(shù)字中負數(shù)有2個,根據(jù)概率公式即可得出答案;

(2)根據(jù)題意列表得出所有等可能的情況數(shù),找出點(x,y)落在直線y=-x-1上的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】(1)∵共有4個數(shù)字,分別是﹣3,﹣1,0,2,其中是負數(shù)的有﹣3,﹣1,∴所抽取的數(shù)字恰好為負數(shù)的概率是=;(2)根據(jù)題意列表如下:﹣3﹣102﹣3(﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1(﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0(﹣3,0)(﹣1,0)(0,0)(2,0)2(﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情況有16種,其中點(x,y)在直線y=﹣x﹣1上的情況有4種,則點(x,y)在直線y=﹣x﹣1上的概率是=.【點睛】/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論