




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.一個不透明的袋子裝有除顏色外其余均相同的2個白球和個黑球.隨機地從袋中摸出一個球記錄下顏色,再放回袋中搖勻.大量重復試驗后,發(fā)現(xiàn)摸出白球的頻率穩(wěn)定在1.2附近,則的值為()A.2 B.4 C.8 D.112.已知(x2+y2)(x2+y2-1)-6=0,則x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-23.如圖,在中,,,點從點沿邊,勻速運動到點,過點作交于點,線段,,,則能夠反映與之間函數(shù)關(guān)系的圖象大致是()A. B. C. D.4.如圖,在平行四邊形中,為延長線上一點,且,連接交于,則△與△的周長之比為()A.9:4 B.4:9C.3:2 D.2:35.如圖,點A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半徑為2,則圖中陰影部分的面積是()A. B. C. D.6.下列說法正確的是()A.等弧所對的圓心角相等B.三角形的外心到這個三角形的三邊距離相等C.經(jīng)過三點可以作一個圓D.相等的圓心角所對的弧相等7.如圖,某一時刻太陽光下,小明測得一棵樹落在地面上的影子長為2.8米,落在墻上的影子高為1.2米,同一時刻同一地點,身高1.6米他在陽光下的影子長0.4米,則這棵樹的高為()米.A.6.2 B.10 C.11.2 D.12.48.⊙O的半徑為4,圓心O到直線l的距離為3,則直線l與⊙O的位置關(guān)系是()A.相交B.相切C.相離D.無法確定9.在單詞mathematics(數(shù)學)中任意選擇一個字母,字母為“m”的概率為()A. B. C. D.10.我市參加教師資格考試的人數(shù)逐年增加,據(jù)有關(guān)部門統(tǒng)計,2017年約為10萬人次,2019年約為18.8萬人次,設考試人數(shù)年均增長率為x,則下列方程中正確的是A.10(1+2x)=18.8 B.=10C.=18.8 D.=18.8二、填空題(每小題3分,共24分)11.在△ABC中,∠C=90°,若AC=6,BC=8,則△ABC外接圓半徑為________;12.小明與父母國慶節(jié)從杭州乘動車回臺州,他們買到的火車票是同一排相鄰的三個座位,那么小明恰好坐在父母中間的概率是_________.13.如圖,P是∠α的邊OA上一點,且點P的坐標為(3,4),則=____________.14.觀察下列運算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,則:81+82+83+84+…+82014的和的個位數(shù)字是.15.已知圓錐的底面半徑是3cm,母線長是5cm,則圓錐的側(cè)面積為_____cm1.(結(jié)果保留π)16.如圖所示的弧三角形,又叫萊洛三角形,是機械學家萊洛首先進行研究的.弧三角形是這樣畫的:先畫一個正三角,然后分別以三個頂點為圓心,邊長長為半徑畫弧得到的三角形.若中間正三角形的邊長是10,則這個萊洛三角形的周長是____________.17.已知扇形半徑為5cm,圓心角為60°,則該扇形的弧長為________cm.18.如圖,為反比例函數(shù)(其中)圖象上的一點,在軸正半軸上有一點,.連接,,且.過點作,交反比例函數(shù)(其中)的圖象于點,連接交于點,則的值為_____________.三、解答題(共66分)19.(10分)如圖,海中有一個小島,它的周圍海里內(nèi)有暗礁,今有貨船由西向東航行,開始在島南偏西的處,往東航行海里后到達該島南偏西的處后,貨船繼續(xù)向東航行,你認為貨船在航行途中有沒有觸礁的危險.20.(6分)數(shù)學興趣小組對矩形面積為9,其周長m的范圍進行了探究.興趣小組的同學們已經(jīng)能用“代數(shù)”的方法解決,以下是他們從“圖形”的角度進行探究的部分過程,請把過程補充完整.(1)建立函數(shù)模型.設矩形相鄰兩邊的長分別為x,y,由矩形的面積為9,得xy=9,即y=;由周長為m,得2(x+y)=m,即y=﹣x+.滿足要求的(x,y)應是兩個函數(shù)圖象在第象限內(nèi)交點的坐標.(2)畫出函數(shù)圖象.函數(shù)y=(x>0)的圖象如圖所示,而函數(shù)y=﹣x+的圖象可由直線y=﹣x平移得到,請在同一直角坐標系中畫出直線y=﹣x.(3)平移直線y=﹣x,觀察函數(shù)圖象.①當直線平移到與函數(shù)y=(x>0)的圖象有唯一交點(3,3)時,周長m的值為;②在直線平移過程中,直線與函數(shù)y=(x>0)的圖象交點個數(shù)還有哪些情況?請寫出交點個數(shù)及對應的周長m的取值范圍.(4)得出結(jié)論面積為9的矩形,它的周長m的取值范圍為.21.(6分)某學校為了解學生“第二課堂“活動的選修情況,對報名參加A.跆拳道,B.聲樂,C.足球,D.古典舞這四項選修活動的學生(每人必選且只能選修一項)進行抽樣調(diào)查.并根據(jù)收集的數(shù)據(jù)繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:(1)本次調(diào)查的學生共有人;在扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是;(2)將條形統(tǒng)計圖補充完整;(3)在被調(diào)查選修古典舞的學生中有4名團員,其中有1名男生和3名女生,學校想從這4人中任選2人進行古典舞表演.請用列表或畫樹狀圖的方法求被選中的2人恰好是1男1女的概率.22.(8分)如圖,已知拋物線與x軸交于A、B兩點,與y軸交于C點,其中A(1,0),C(0,3).(1)求該拋物線的解析式;(2)求該拋物線的對稱軸及點B的坐標;(3)設點P為該拋物線對稱軸上的一個動點,是否存在點P使△BPC為直角三角形,若存在,求出點P的坐標;若不存在,請說明理由.23.(8分)邊長為2的正方形在平面直角坐標系中的位置如圖所示,點是邊的中點,連接,點在第一象限,且,.以直線為對稱軸的拋物線過,兩點.(1)求拋物線的解析式;(2)點從點出發(fā),沿射線每秒1個單位長度的速度運動,運動時間為秒.過點作于點,當為何值時,以點,,為頂點的三角形與相似?(3)點為直線上一動點,點為拋物線上一動點,是否存在點,,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.24.(8分)如圖,中,,以為直徑作半圓交于點,點為的中點,連接.(1)求證:是半圓的切線;(2)若,,求的長.25.(10分)如圖,在中,是邊上的高,且.
(1)求的度數(shù);(2)在(1)的條件下,若,求的長.26.(10分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且利潤率不得高于50%.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:售價x(元/千克)455055銷售量y(千克)11010090(1)求y與x之間的函數(shù)表達式,并寫出自變量的范圍;(2)設每天銷售該商品的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本),并求出售價為多少元時每天銷售該商品所獲得最大利潤,最大利潤是多少?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目,二者的比值就是其發(fā)生的概率.【詳解】解:依題意有:=1.2,
解得:n=2.
故選:C.【點睛】此題考查了利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=是解題關(guān)鍵.2、C【分析】設m=x2+y2,則有,求出m的值,結(jié)合x2+y20,即可得到答案.【詳解】解:根據(jù)題意,設m=x2+y2,∴原方程可化為:,∴,解得:或;∵,∴,∴;故選:C.【點睛】本題考查了換元法求一元二次方程,解題的關(guān)鍵是熟練掌握解一元二次方程的方法和步驟.3、D【分析】分兩種情況:①當P點在OA上時,即2≤x≤2時;②當P點在AB上時,即2<x≤1時,求出這兩種情況下的PC長,則y=PC?OC的函數(shù)式可用x表示出來,對照選項即可判斷.【詳解】解:∵△AOB是等腰直角三角形,AB=,∴OB=1.①當P點在OA上時,即2≤x≤2時,PC=OC=x,S△POC=y=PC?OC=x2,是開口向上的拋物線,當x=2時,y=2;OC=x,則BC=1-x,PC=BC=1-x,S△POC=y=PC?OC=x(1-x)=-x2+2x,是開口向下的拋物線,當x=1時,y=2.綜上所述,D答案符合運動過程中y與x的函數(shù)關(guān)系式.故選:D.【點睛】本題主要考查了動點問題的函數(shù)圖象,解決這類問題要先進行全面分析,根據(jù)圖形變化特征或動點運動的背景變化進行分類討論,然后動中找靜,寫出對應的函數(shù)式.4、C【分析】由題意可證△ADF∽△BEF可得△ADF與△BEF的周長之比=,由可得,即可求出△ADF與△BEF的周長之比.【詳解】∵四邊形ABCD是平行四邊形,∴,AD=BC,∵∴即∵,∴△ADF∽△BEF∴△ADF與△BEF的周長之比=.故選:C.【點睛】本題考查了相似三角形的性質(zhì)和判定,平行四邊形的性質(zhì),利用相似三角形周長的比等于相似比求解是解本題的關(guān)鍵.5、B【分析】連接BC、OD、OC、BD,過O點作OE⊥CD于E點,先證△COD是等邊三角形,再根據(jù)陰影部分的面積是S扇形COD-S△COD計算可得.【詳解】如圖所示,連接BC、OD、OC、BD,過O點作OE⊥CD于E點,
∵∠A=40°,AB=AC,
∴∠ABC=70°,
∵CD∥AB,
∴∠ACD=∠A=40°,
∴∠ABD=∠ACD=40°,
∴∠DBC=30°,
則∠COD=2∠DBC=60°,
又OD=OC,
∴△COD是等邊三角形,∴OD=CD=2,DE=∴
則圖中陰影部分的面積是S扇形COD-S△COD
故選:B.【點睛】本題主要考查扇形面積的計算,解題的關(guān)鍵是掌握等腰三角形和等邊三角形的判定與性質(zhì)、圓周角定理、扇形的面積公式等知識點.6、A【解析】試題分析:A.等弧所對的圓心角相等,所以A選項正確;B.三角形的外心到這個三角形的三個頂點的距離相等,所以B選項錯誤;C.經(jīng)過不共線的三點可以作一個圓,所以C選項錯誤;D.在同圓或等圓中,相等的圓心角所對的弧相等,所以D選項錯誤.故選C.考點:1.確定圓的條件;2.圓心角、弧、弦的關(guān)系;3.三角形的外接圓與外心.7、D【分析】先根據(jù)同一時刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度,再加上落在墻上的影長即得答案.【詳解】解:設從墻上的影子的頂端到樹的頂端的垂直高度是x米,則,解得:x=11.2,所以樹高=11.2+1.2=12.4(米),故選:D.【點睛】本題考查的是投影的知識,解本題的關(guān)鍵是正確理解題意、根據(jù)同一時刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度.8、A【解析】∵圓心O到直線l的距離d=3,⊙O的半徑R=4,則d<R,∴直線和圓相交.故選A.9、B【分析】根據(jù)概率公式進行計算即可.【詳解】在單詞“mathematics”中,共11個字母,其中有2個字母“m”,故從中任意選擇一個字母,這個字母為“m”的概率是.故選:B.【點睛】本題考查概率的計算,熟記概率公式是解題關(guān)鍵.10、C【分析】根據(jù)增長率的計算公式:增長前的數(shù)量×(1+增長率)增長次數(shù)=增長后數(shù)量,從而得出答案.【詳解】根據(jù)題意可得方程為:10(1+x)2=18.8,故選:C.【點睛】本題主要考查的是一元二次方程的應用,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是明確基本的計算公式.二、填空題(每小題3分,共24分)11、5【分析】先確定外接圓的半徑是AB,圓心在AB的中點,再計算AB的長,由此求出外接圓的半徑為5.【詳解】∵在△ABC中,∠C=90°,∴△ABC外接圓直徑為斜邊AB、圓心是AB的中點,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圓半徑為5.故答案為:5.【點睛】此題考查勾股定理的運用、三角形外接圓的確定.根據(jù)圓周角定理,直角三角形的直角所對的邊為直徑,即可確定圓的位置及大小.12、【分析】根據(jù)題意列樹狀圖解答即可.【詳解】由題意列樹狀圖:他們的座位共有6種不同的位置關(guān)系,其中小明恰好坐在父母中間的2種,∴小明恰好坐在父母中間的概率=,故答案為:.【點睛】此題考查事件概率的計算,正確列樹狀圖解決問題是解題的關(guān)鍵.13、【解析】∵點P的坐標為(3,4),∴OP=,∴.故答案為:.14、1.【解析】試題分析:易得底數(shù)為8的冪的個位數(shù)字依次為8,2,1,6,以2個為周期,個位數(shù)字相加為0,呈周期性循環(huán).那么讓1012除以2看余數(shù)是幾,得到相和的個位數(shù)字即可:∵1012÷2=503…1,∴循環(huán)了503次,還有兩個個位數(shù)字為8,2.∴81+81+83+82+…+81012的和的個位數(shù)字是503×0+8+2=11的個位數(shù)字.∴81+81+83+82+…+81012的和的個位數(shù)字是1.考點:探索規(guī)律題(數(shù)字的變化類——循環(huán)問題).15、15π【分析】圓錐的側(cè)面積=底面周長×母線長÷1.【詳解】解:底面圓的半徑為3cm,則底面周長=6πcm,側(cè)面面積=×6π×5=15πcm1.故答案為:15π.【點睛】本題考查的知識點圓錐的側(cè)面積公式,牢記公式是解此題的關(guān)鍵.16、10π【分析】根據(jù)正三角形的有關(guān)計算求出弧的半徑和圓心角,根據(jù)弧長的計算公式求解即可.【詳解】解:如圖:
∵△ABC是正三角形,
∴∠BAC=60°,
∴的長為:,
∴萊洛三角形的周長=.故答案為:.【點睛】本題考查的是正多邊形和圓的知識,理解弧三角形的概念、掌握正多邊形的中心角的求法是解題的關(guān)鍵.17、【分析】直接利用弧長公式進行計算.【詳解】解:由題意得:=,故答案是:【點睛】本題考查了弧長公式,考查了計算能力,熟練掌握弧長公式是關(guān)鍵.18、【分析】過點作軸,垂足為點,交于點,根據(jù)三線合一可得,,,利用平行線即可求出MH從而求出AM,再根據(jù)平行線即可證出,列出比例式即可求出的值.【詳解】解:過點作軸,垂足為點,交于點,如圖所示.,,,,,,,,.故答案為【點睛】此題考查的是反比例函數(shù)與圖形題,掌握利用反比例函數(shù)求點的坐標和相似三角形的判定及性質(zhì)是解決此題的關(guān)鍵.三、解答題(共66分)19、無觸礁的危險,理由見解析【分析】作高AD,由題意可得∠ACD=60°,∠ABC=30°,進而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的邊角關(guān)系,求出AD與15海里比較即可.【詳解】解:過點A作ADBC,垂足為D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以貨船在航行途中無觸礁的危險.【點睛】本題考查了解直角三角形的應用,解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,正確作出高線是解題的關(guān)鍵.20、(1)一;(2)見解析;(3)①1;②0個交點時,m<1;1個交點時,m=1;2個交點時,m>1;(4)m≥1.【分析】(1)x,y都是邊長,因此,都是正數(shù),即可求解;(2)直接畫出圖象即可;(3)在直線平移過程中,交點個數(shù)有:0個、1個、2個三種情況,聯(lián)立y=和y=﹣x+整理得:﹣mx+9=0,即可求解;(4)由(3)可得.【詳解】解:(1)x,y都是邊長,因此,都是正數(shù),故點(x,y)在第一象限,故答案為:一;(2)圖象如下所示:(3)①當直線平移到與函數(shù)y=(x>0)的圖象有唯一交點(3,3)時,由y=﹣x+得:3=﹣3+m,解得:m=1,故答案為1;②在直線平移過程中,交點個數(shù)有:0個、1個、2個三種情況,聯(lián)立y=和y=﹣x+并整理得:x2﹣mx+9=0,∵△=m2﹣4×9,∴0個交點時,m<1;1個交點時,m=1;2個交點時,m>1;(4)由(3)得:m≥1,故答案為:m≥1.【點睛】本題是反比例函數(shù)綜合運用題,涉及到一次函數(shù)、一元二次方程、函數(shù)平移等知識點,此類探究題,通常按照題設條件逐次求解即可.21、(1)200、144;(2)補全圖形見解析;(3)被選中的2人恰好是1男1女的概率.【分析】(1)由A活動的人數(shù)及其所占百分比可得總?cè)藬?shù),用360°乘以B活動人數(shù)所占比例即可得;
(2)用總?cè)藬?shù)減去其它活動人數(shù)求出C的人數(shù),從而補全圖形;
(3)列表得出所有等可能的情況數(shù),找出剛好抽到一男一女的情況數(shù),即可求出所求的概率.【詳解】(1)本次調(diào)查的學生共有30÷15%=200(人),扇形統(tǒng)計圖中,B所對應的扇形的圓心角的度數(shù)是360°×=144°,故答案為200、144;(2)C活動人數(shù)為200﹣(30+80+20)=70(人),補全圖形如下:(3)畫樹狀圖為:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能情況,1男1女有6種情況,∴被選中的2人恰好是1男1女的概率.【點睛】本題考查了扇形統(tǒng)計圖,條形統(tǒng)計圖,樹狀圖等知識點,解題時注意:概率=所求情況數(shù)與總情況數(shù)之比.22、(1);(2)x=-1;(-3,0);(3)存在;P的坐標為或或或.【分析】(1)將點A、C兩點的坐標代入二次函數(shù)解析式中即可求出結(jié)論;(2)根據(jù)對稱軸公式即可求出拋物線的對稱軸,然后令y=0,求出x的值,即可求出點B的坐標;(3)設P(-1,t),利用平面直角坐標系中任意兩點的距離公式求出,,,然后根據(jù)直角頂點分類討論,分別利用勾股定理列出方程即可求出結(jié)論.【詳解】解:(1)把點A(1,0),C(0,3)代入二次函數(shù),得解得:.∴拋物線的解析式是;(2)∵,∴拋物線的對稱軸為x=-1.令y=0,則解得.∴點B的坐標為(-3,0);(3)存在,設P(-1,t),又∵C(0,3),∴,,.①若點B為直角頂點,則.即:.解之得:;②若點C為直角頂點,則.即:.解之得:;③若點P為直角頂點,則.即:.解之得:,.綜上所述P的坐標為或或或.【點睛】此題考查的是二次函數(shù)的綜合大題,掌握利用待定系數(shù)法求二次函數(shù)解析式、拋物線的對稱軸公式、平面直角坐標系中任意兩點的距離公式和勾股定理是解決此題的關(guān)鍵.23、(1);(2)或時,以點,,為頂點的三角形與相似;(3)存在,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,【分析】(1)根據(jù)正方形的性質(zhì),可得OA=OC,∠AOC=∠DGE,根據(jù)余角的性質(zhì),可得∠OCD=∠GDE,根據(jù)全等三角形的判定與性質(zhì),可得EG=OD=1,DG=OC=2,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分類討論:若△DFP∽△COD,根據(jù)相似三角形的性質(zhì),可得∠PDF=∠DCO,根據(jù)平行線的判定與性質(zhì),可得∠PDO=∠OCP=∠AOC=90,根據(jù)矩形的判定與性質(zhì),可得PC的長;若△PFD∽△COD,根據(jù)相似三角形的性質(zhì),可得∠DPF=∠DCO,,根據(jù)等腰三角形的判定與性質(zhì),可得DF于CD的關(guān)系,根據(jù)相似三角形的相似比,可得PC的長;(3)分類討論:當四邊形是平行四邊形時,四邊形是平行四邊形時,四邊形是平行四邊形時,根據(jù)一組對邊平行且相等的四邊形式平行四邊,可得答案.【詳解】解:(1)過點作軸于點.∵四邊形是邊長為2的正方形,是的中點,∴,,.∵,∴.∵,∴.在和中,∴,,.∴點的坐標為.∵拋物線的對稱軸為直線即直線,∴可設拋物線的解析式為,將、點的坐標代入解析式,得,解得.∴拋物線的解析式為;(2)①若,則,,∴,∴四邊形是矩形,∴,∴;②若,則,∴.∴.∴,∴.∵,∴,∴.∵,∴,,綜上所述:或時,以點,,為頂點的三角形與相似:(3)存在,①若以DE為平行四邊形的對角線,如圖2,此時,N點就是拋物線的頂點(2,),由N、E兩點坐標可求得直線NE的解析式為:y=x;∵DM∥EN,∴設DM的解析式為:y=x+b,將D(1,0)代入可求得b=?,∴DM的解析式為:y=x?,令x=2,則y=,∴M(2,);②過點C作CM∥DE交拋物線對稱軸于點M,連接ME,如圖3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四邊形,即N點與C占重合,∴N(0,2),M(2,3);③N點在拋物線對稱軸右側(cè),MN∥DE,如圖4,作NG⊥BA于點G,延長DM交BN于點H,∵MNED是平行四邊形,∴∠MDE=MNE,∠ENH=∠DHB,∵BN∥DF,∴∠ADH=∠DHB=∠ENH,∴∠MNB=∠EDF,在△BMN和△FED中∴△BMN≌△FED(AAS),∴BM=EF=1,BN=DF=2,∴M(/r
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年 長沙市北雅中學招聘教師考試試題附答案
- 中國活動扳手行業(yè)市場運營態(tài)勢分析及投資前景預測報告
- 2025年中國關(guān)節(jié)內(nèi)窺鏡行業(yè)市場深度分析及投資策略咨詢報告
- 中國低溫粉碎機行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 2023-2028年中國無機陶瓷行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A測報告
- 2025年中國無功功率補償設備行業(yè)投資分析及發(fā)展戰(zhàn)略咨詢報告
- 中國游泳池自動水處理系統(tǒng)項目投資可行性研究報告
- 中國太陽能單晶硅棒行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃報告
- 2020-2025年中國現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)園區(qū)行業(yè)投資研究分析及發(fā)展前景預測報告
- 中國半導體照明光源行業(yè)市場全景監(jiān)測及投資策略研究報告
- DBJ∕T 13-261-2017 福建省二次供水不銹鋼水池(箱)應用技術(shù)規(guī)程
- 簡歷撰寫與面試技巧
- GB∕T 16422.3-2022 塑料 實驗室光源暴露試驗方法 第3部分:熒光紫外燈
- 新建區(qū)2018年中小學(幼)教師、特崗教師
- 中國歷史地理復習資料
- 05示例:玉米脫粒機的設計(含全套CAD圖紙)
- 冷庫項目施工組織設計方案
- 年中總結(jié)會策劃方案
- (最新)污水處理池施工方案
- 肺膿腫護理查房ppt課件
- 我要建一座王宮(正譜)
評論
0/150
提交評論