1.5一元一次不等式與一次函數(shù)(含答案)_第1頁
1.5一元一次不等式與一次函數(shù)(含答案)_第2頁
1.5一元一次不等式與一次函數(shù)(含答案)_第3頁
1.5一元一次不等式與一次函數(shù)(含答案)_第4頁
1.5一元一次不等式與一次函數(shù)(含答案)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

121.5一元一次不等式與一次函數(shù)A卷:基礎題、選擇題.在一次函數(shù)y=—2x+8中,若y>0,則()A.x>4 B.x<4 C.x>0 D.x<02.如下左圖是一次函數(shù) y=kx+b的圖象,當y<2時,x的取值范圍是( )A.mK2B.mK-2 C.m>2D.m<2.已知函數(shù)y=mx+2x-2,要使函數(shù)值y隨自變量x的增大而增大,則m的取值范圍是()A.m>-2 B.m>-2C.mK-2 D.m<-2.直線Li:y=kix+b與直線L2:y=k2x在同一平面直角坐標系中的圖象如圖所示,則關于x的不等式kix+b>k2x的解為( )A.x>—1B.x<—1C.x<—2 D.無法確定二、填空題.已知y1=3x+2,y2=—x—5,如果y1>y2,則x的取值范圍是..當a取時,一次函數(shù)y=3x+a+6與y軸的交點在x軸下方.(?在橫線上填上一個你認為恰當?shù)臄?shù)即可).已知一次函數(shù)y=(a+5)x+3經過第一,二,三象限,則 a的取值范圍是..一次函數(shù)y=kx+2中,當x」時,yWQ則y隨x的增大而.2三、解答題.一次函數(shù)y=2x—a與x軸的交點是點(一2,0)關于y軸的對稱點,求一元一次不等式2x-awo的解集..我邊防局接到情報,在離海岸 5海里處有一可疑船只A正向公海方向行駛,?邊防局迅速派出快艇B追趕.圖1—5—3中,La,Lb分別表示兩船相對于海岸的距離 s(海里)與追趕時間t(分)之間的關系.A,B哪個速度快?B能否追上A?12.小華準備將平時的零用錢節(jié)約一些儲存起來,他已存有62元, ?從現(xiàn)在起每個月存 12元,小華的同學小麗以前沒有存過零用錢,聽到小華在存零用錢,?表示從現(xiàn)在起每個月存20元,爭取超過小華.(1)試寫出小華的存款總數(shù) yi與從現(xiàn)在開始的月數(shù)x?之間的函數(shù)關系式以及小麗存款數(shù) y2與與月數(shù)x之間的函數(shù)關系式;(2)從第幾個月開始小麗的存款數(shù)可以超過小華?B卷:提高題一、七彩題1.(一題多解)已知一次函數(shù) y=kx+b中,k<0,則當xi<x2時,xi對應的函數(shù)值yi與X2對應的函數(shù)值 y2之間的大小關系是什么?2.(一題多變題)x為何值時,一次函數(shù)y=-2x+3的值小于一次函數(shù) y=3x-5的值?(1)一變:x為何值時,一次函數(shù) y=-2x+3的值等于一次函數(shù) y=3x-5的值;(2)二變: x為何值時,一次函數(shù)y=-2x+3的圖象在一次函數(shù) y=3x-5的圖象的上方?(3)三變:已知一次函數(shù) yi=—2x+a,y2=3x—5a,當x=3時,yi>y2,求a的取值范圍.二、知識交叉題3.(科內交叉題)已知I3a+6|+(a+b+2m)=0,則:(1)當 b>0時,求 m的取值范圍; (2)當 b<0時,求m的取值范圍;(3)當 b=0時,求 m的值..(科外交叉題)兩個物體A,B所受壓強分別為Pa(帕)與Pb(帕)(Pa,Pb為常數(shù)),PAWIB20臺,乙型30臺.?現(xiàn)將這50臺PAWIB20臺,乙型30臺.?現(xiàn)將這50臺如圖所示,則( )A.Pa<Pb B.Pa=Pb C.Pa>Pb D.三、實際應用題.光華農機租賃公司共有50臺聯(lián)合收割機,其中甲型聯(lián)合收割機派往A,B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農機租賃公司商定的每天的租賃價格見下表:每臺甲型收割機的租金每臺乙型收割機的租金A地區(qū)1800元1600元B地區(qū)1600元1200元(1)設派往A地區(qū)x臺乙型聯(lián)合收割機,農機租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x之間的函數(shù)關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于 79600元,?說明有多少種分派方案,并將各種方案設計出來;(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農機租賃公司提出一條合理建議.四、經典中考題.(2008,沈陽,3分)一次函數(shù)y=kx+b的圖象如圖所示,當時,x的取值范圍是( )A.x>0B.x<0C.x>2D.x<2.(2007,福州,10分)李暉到寧泉牌”服裝專賣店做社會調查.解到商店為了激勵營業(yè)員的工作積極性,實行 月總收入=基本工資+計件獎金”的方法,并獲得如下信息:營業(yè)員小俐小花月銷售件數(shù)(件)200150月總收入(元)14001250假設月銷售件數(shù)為x件,月總收入為y元,銷售1件獎勵a元,營業(yè)員月基本工資為b元.(1)求a,b的值;(2)若營業(yè)員小俐某月總收入不低于 1800元,則小俐當月至少要賣服裝多少件?C卷:課標新型題1(條件開放題)當x取時,一次函數(shù)y=—2x+7的函數(shù)值為負數(shù).(?在橫線上填上一個你認為恰當?shù)臄?shù)即可).(圖象信息題)如圖,某面粉加工企業(yè)急需汽車,但因資金問題無力購買,公司經理想租一輛汽車.一國有公司的條件是每百千米租費 110元;?一個體出租車公司的條件是每月付工資1000元,油錢600元,另外每百千米付10元,請問公司經理該根據自己的情況怎樣租汽車?.(最佳方案設計題)某工廠生產某種產品,每件產品的出廠價為 1萬元,?其原材料成本價(含設備損耗)為0.55萬元,同時在生產過程中平均每生產一件產品有 1噸廢渣產生,為達到國家環(huán)保要求,需要對廢渣進行脫硫,脫氯等處理,現(xiàn)有兩種方案可供選擇.方案一:由工廠對廢渣直接進行處理, 每處理1噸廢渣所用的原料費為0.05萬元,并且每月設備維護及損耗費為 20萬元;方案二:工廠將廢渣集中到廢渣處理廠統(tǒng)一處理,每處理一噸廢渣需付 0.1?萬元的處理費.問:(1)設工廠每月生產x件產品,每月利潤為y萬元,分別求出方案一和方案二處理廢渣時,y與x之間的關系式(利潤=總收入一總支出);(2)若你作為該廠負責人,如何根據月產量選擇處理方案, ?既可達到環(huán)保要求又最合算?3.某學校需刻錄一批光盤,若在電腦公司刻錄每張需 8元(包括空白光盤費);?若學校自制,除租用刻錄機需120元外,每張還需成本4元(包括空白光盤費).?問刻錄這批電腦光盤到電腦公司刻錄費用省,還是自制費用???請你說明理由.參考答案A卷一、1.B點撥:由題意知—2x+8>0,2x<8,x<4.C點撥:由圖象可知,當y<2時,x<3.A點撥:其圖象過第一,三象限或第一,三,四象限.B點撥:由題意知m+2>0,m>-2.B二、6.x>一4點撥:由題意知3x+2>-x-5,4x>—7,x>-4..-7點撥:當a+6<0,即a<-6時,一次函數(shù)y=3x+a+6與y軸的交點在x軸的下方,?此題答案不唯一..a>—5點撥:由題意知a+5>0,a>—5.減小點撥:由題意可知,直線y=kx+2與x軸相交于點(1,0),代入表達式求得2k=—4<0,y隨x的增大而減小,也可以通過作圖判斷.三、10.解:由題意得點(2,0)在y=2x—a上,所以0=4—a,

所以a=4.當a=4時,2x—4WQ所以x<2.解:(1)因為直線La過點(0,5),(10,7)兩點,設直線L設直線La的解析式為y=k1x+b,5b,710(b'所以k15,所以y=1x+5,b5,因為直線Lb因為直線Lb過點(0,0),(105)兩點,設直線Lb的解析式為y=k2x.」x.21」x.2當5=10k2,所以k2=-,所以y2因為k1<k2,所以B的速度快.(2)因為k1<k2,所以B能追上A.點撥:根據圖象提供的信息,分別求出 La,Lb的關系式,根據k?值的大小來判斷誰的速度快,B能否追上A.實際上,根據圖象就可以直接作出判斷..解:(1)y1=62+12x,y2=20x.(2)由20x>62+12x,得x>7.75,所以從第8個月開始,小麗的存款數(shù)可以超過小華.B卷一、1.解法一:當k<0時,一次函數(shù)y=kx+b中y隨x的增大而減小,所以當x1<x2時,y1>y2.yby〔kx〔b x1 k解法二:由題意可得y ,所以 k,y2kx2b, y2bx2 k由x1<x2,得必——<-y2——,因為k<0,兩邊同時乘以k,得y1一b>y2—b,所以y1>y2.點撥:解法一是根據函數(shù)性質,判斷 y1與y2的大小,解法二是由方程組得到XiX2y〔bk,再由x1<x2,得*———<XiX2y〔bk,再由x1<x2,得*———<-^2——-,由k<0,得y1一b>y2—b,得y1>y2.y2b kkk2.解:由題意可知一2x+3<3x—5,-5x<-8,x>8.(1)由題意可知—2x+3=3x—5,-5x=-8,(2)由題意可知—2x+3>3x—5,-5x>-8,5x=8.5x<8.5(3)當x=3時,yi=—6+ay2=9—5a,因為y1>y2,所以—6+a>9—5a,6a>15,二、3.解:由題意得3a+6=0,a>5.2a+b+2m=0,由3a+6=0,得a=-2,所以一2+b+2m=0,即b=2—2m.(1)當b>0時,2—2m>02m<2(2)當b<0(1)當b>0時,2—2m>02m<2(2)當b<0時,2—2m<02m>2(3)當b=0時,2—2m=02m=2點撥:由非負數(shù)的性質可得到兩個方程,由其中一個方程求出a點撥:由非負數(shù)的性質可得到兩個方程,由其中一個方程求出a的值,代入另一個主程,從而得到一個含有b和程,從而得到一個含有b和m的方程,用含m的代數(shù)式表示b,?然后分別代入題目的一個條件中,解不等式或方程即可.4.A點撥:在兩圖象上分別找一點 A(SFa),B(S,Fb),它們的橫坐標相同.?由題意知4.A點撥:在兩圖象上分別找一點 A(SFa),B(S,Fb),它們的橫坐標相同.?由題意知Pa=_a,Pb=b,Pa-Pb=a-SS S所以Pa—Pb=———<0,所以Pa<Pb.S三、5.解:(1)派往A地區(qū)的乙型收割機為Fb Fa FbS-Sx臺,則派往因為Fa<Fb,所以Fa-Fb<0,A地區(qū)的甲型收割機為(30-x)臺,派往B地區(qū)的乙型收割機為(30—x)臺,派往B地區(qū)的甲型收割機為(x—10)臺,則:y=1600x+1800(30—x)+1200(30—x)+1600(x—10)=200x+74000(10WxW30x?是正整數(shù)).

(2)由題意得200X+74000a79600解得x>28由于10WxW3斷以x取28,29,30三個值,所以有三種分配方案(方案略)(3)由于一次函數(shù)y=200x+74000的值是隨著x的增大而增大的,所以當x=30時,?y取最大值.建議農機租賃公司將30臺乙型收割機全部派往A地區(qū),20?臺甲型收割機全部派往B地區(qū),可使公司獲得的租金最高.點撥:根據這50臺聯(lián)合收割機一天獲得的租金總額不低于 79600元,?得到不等式200x+74000a79600解這個不等式,得x的取值范圍.注意x為正整數(shù)這個條件;?一般情況下,一次函數(shù)沒有最大(小)值,但根據自變量的取值范圍,可求它的最大(小)值.b,,解得a=3,b=800.b,四、6.C點撥:本題比較容易,考查一次函數(shù)的圖象,從圖象上看y<0時圖象在xb,,解得a=3,b=800.b,1400200a7.解:(1)依題意,得y=ax+b,所以1250150a(2)依題意,得y>1800即3x+800>1800解得答:小俐當月至少要賣服裝 334件.點撥:列解方程組,求出a,b的值,得到y(tǒng)與x之間的函數(shù)關系式,令y>1800?得關于x的一元一次不等式,解這個不等式,得 x的取值范圍,注意x取正整數(shù).1.4點撥:本題是條件開放題,答案不唯一..解:從圖象上可以看出:當x<16時,y國有<y個體;當x=16時,y國有二y個體;當x>16時,y國有〉y個體.所以若該公司每月業(yè)務量小于 16百千米時,應選用國有公司的車;若每月業(yè)務量等于16百千米時,國有和個體的花費一樣多;若每月的業(yè)務量大于16百千米時,?應選個體出租車.點撥:數(shù)形結合的思想是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論