2023屆遼寧省鞍山市九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第1頁
2023屆遼寧省鞍山市九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第2頁
2023屆遼寧省鞍山市九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第3頁
2023屆遼寧省鞍山市九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第4頁
2023屆遼寧省鞍山市九年級數(shù)學(xué)上冊期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,將△ABC繞著點A順時針旋轉(zhuǎn)30°得到△AB′C′,若∠BAC′=80°,則∠B′AC=()‘A.20° B.25° C.30° D.35°2.若,則的值為()A. B. C. D.3.如圖,在中,,,則的值是()A. B.1 C. D.4.方程的解是()A.0 B.3 C.0或–3 D.0或35.下列說法正確的是()①經(jīng)過三個點一定可以作圓;②若等腰三角形的兩邊長分別為3和7,則第三邊長是3或7;③一個正六邊形的內(nèi)角和是其外角和的2倍;④隨意翻到一本書的某頁,頁碼是偶數(shù)是隨機事件;⑤關(guān)于x的一元二次方程x2-(k+3)x+k=0有兩個不相等的實數(shù)根.A.①②③ B.①④⑤ C.②③④ D.③④⑤6.方程x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-47.如圖,是的直徑,弦于,連接、,下列結(jié)論中不一定正確的是()A. B. C. D.8.如圖,已知的三個頂點均在格點上,則的值為()A. B. C. D.9.對于二次函數(shù),下列描述錯誤的是().A.其圖像的對稱軸是直線=1 B.其圖像的頂點坐標(biāo)是(1,-9)C.當(dāng)=1時,有最小值-8 D.當(dāng)>1時,隨的增大而增大10.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.111.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經(jīng)過三輪初賽,他們的平均成績都是86分,方差如下表,你認為派誰去參賽更合適()選手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁12.如圖,中,,頂點,分別在反比例函數(shù)()與()的圖象上.則下列等式成立的是()A. B. C. D.二、填空題(每題4分,共24分)13.方程的解是_____________.14.鬧元宵吃湯圓是我國傳統(tǒng)習(xí)俗,正月十五小明的媽媽煮了一碗湯圓,其中有4個花生味和2個芝麻味,小明從中任意吃一個,恰好吃到花生味湯圓的概率是_____.15.小明身高是1.6m,影長為2m,同時刻教學(xué)樓的影長為24m,則樓的高是_____.16.如圖,∠C=∠E=90°,AC=3,BC=4,AE=2,則AD=_________.17.已知兩個數(shù)的差等于2,積等于15,則這兩個數(shù)中較大的是.18.為了解某校九年級學(xué)生每天的睡眠時間,隨機調(diào)查了其中20名學(xué)生,將所得數(shù)據(jù)整理并制成如表,那么這些測試數(shù)據(jù)的中位數(shù)是______小時.睡眠時間(小時)6789學(xué)生人數(shù)8642三、解答題(共78分)19.(8分)某苗圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植人3株時,平均每株盈利3元.在同樣的栽培條件下,若每盆增加1株,平均每株盈利就減少0.5元,要使每盆的盈利為10元,且每盆植入株數(shù)盡可能少,每盆應(yīng)植入多少株?20.(8分)如圖,四邊形中,平分.(1)求證:;(2)求證:點是的中點;(3)若,求的長.21.(8分)如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,點A在x軸的正半軸上,B為⊙O上一點,過點A、B的直線與y軸交于點C,且OA2=AB?AC.(1)求證:直線AB是⊙O的切線;(2)若AB=,求直線AB對應(yīng)的函數(shù)表達式.22.(10分)某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).設(shè)這種雙肩包每天的銷售利潤為w元.(1)求w與x之間的函數(shù)解析式;(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為多少元?23.(10分)關(guān)于的一元二次方程有實數(shù)根.(1)求的取值范圍;(2)如果是符合條件的最大整數(shù),且一元二次方程與方程有一個相同的根,求此時的值.24.(10分)已知函數(shù)y=mx1﹣(1m+1)x+1(m≠0),請判斷下列結(jié)論是否正確,并說明理由.(1)當(dāng)m<0時,函數(shù)y=mx1﹣(1m+1)x+1在x>1時,y隨x的增大而減??;(1)當(dāng)m>0時,函數(shù)y=mx1﹣(1m+1)x+1圖象截x軸上的線段長度小于1.25.(12分)已知關(guān)于x的一元二次方程:2x2+6x﹣a=1.(1)當(dāng)a=5時,解方程;(2)若2x2+6x﹣a=1的一個解是x=1,求a;(3)若2x2+6x﹣a=1無實數(shù)解,試確定a的取值范圍.26.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為多少?

參考答案一、選擇題(每題4分,共48分)1、A【解析】根據(jù)圖形旋轉(zhuǎn)的性質(zhì),圖形旋轉(zhuǎn)前后不發(fā)生任何變化,對應(yīng)點旋轉(zhuǎn)的角度即是圖形旋轉(zhuǎn)的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,從而可得結(jié)論.【詳解】由旋轉(zhuǎn)的性質(zhì)可得,∠BAC=∠B′AC′,∵∠C′AC=30°,∴∠BAC=∠B′AC′=50°,∴∠B′AC=20°.故選A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),圖形旋轉(zhuǎn)前后不發(fā)生任何變化,這是解決問題的關(guān)鍵.2、B【分析】根據(jù)算術(shù)平方根、絕對值的非負性分別解得的值,再計算即可.【詳解】故選:B.【點睛】本題考查二次根式、絕對值的非負性、冪的運算等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.3、A【分析】利用相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方得到,即可解決問題.【詳解】∵,∴,∴,∴,故選:A.【點睛】本題考查相似三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.4、D【解析】運用因式分解法求解.【詳解】由得x(x-3)=0所以,x1=0,x2=3故選D【點睛】掌握因式分解法解一元二次方程.5、D【分析】利用不在同一直線上的三個點確定一個圓,等腰三角形的性質(zhì)及三角形三邊關(guān)系、正多邊形內(nèi)角和公式和外角和、隨機事件的定義及一元二次方程根的判別式分別判斷后即可確定正確的選項.【詳解】解:經(jīng)過不在同一直線上的三個點一定可以作圓,故①說法錯誤;若等腰三角形的兩邊長分別為3和7,則第三邊長是7,故②說法錯誤;③一個正六邊形的內(nèi)角和是180°×(6-2)=720°其外角和是360°,所以一個正六邊形的內(nèi)角和是其外角和的2倍,故③說法正確;隨意翻到一本書的某頁,頁碼可能是奇數(shù),也可能是偶數(shù),所以隨意翻到一本書的某頁,頁碼是偶數(shù)是隨機事件,故④說法正確;關(guān)于x的一元二次方程x2-(k+3)x+k=0,,所以方程有兩個不相等的實數(shù)根,故⑤說法正確.故選:D.【點睛】本題考查了不在同一直線上的三個點確定一個圓,等腰三角形的性質(zhì)及三角形三邊關(guān)系、正多邊形內(nèi)角和公式和外角和、隨機事件的定義及一元二次方程根的判別式,熟練掌握相關(guān)知識點是本題的解題關(guān)鍵.6、C【解析】兩邊開方得到x=±1.【詳解】解:∵x1=4,

∴x=±1,

∴x1=1,x1=-1.

故選:C.【點睛】本題考查了解一元二次方程-直接開平方法:形如ax1+c=0(a≠0)的方程可變形為,當(dāng)a、c異號時,可利用直接開平方法求解.7、C【分析】根據(jù)垂徑定理及圓周角定理對各選項進行逐一分析即可.【詳解】解:∵CD是⊙O的直徑,弦AB⊥CD于E,

∴AE=BE,,故A、B正確;

∵CD是⊙O的直徑,

∴∠DBC=90°,故D正確.

故選:C.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.8、D【分析】過B點作BD⊥AC于D,求得AB、AC的長,利用面積法求得BD的長,利用勾股定理求得AD的長,利用銳角三角函數(shù)即可求得結(jié)果.【詳解】過B點作BD⊥AC于D,如圖,

由勾股定理得,,,∵,即,在中,,,,,∴.故選:D.【點睛】本題考查了解直角三角形以及勾股定理的運用,面積法求高的運用;熟練掌握勾股定理,構(gòu)造直角三角形是解題的關(guān)鍵.9、C【分析】將解析式寫成頂點式的形式,再依次進行判斷即可得到答案.【詳解】=,∴圖象的對稱軸是直線x=1,故A正確;頂點坐標(biāo)是(1,-9),故B正確;當(dāng)x=1時,y有最小值-9,故C錯誤;∵開口向上,∴當(dāng)>1時,隨的增大而增大,故D正確,故選:C.【點睛】此題考查函數(shù)的性質(zhì),熟記每種函數(shù)解析式的性質(zhì)是解題的關(guān)鍵.10、A【解析】連接OM、OD、OF,由正六邊形的性質(zhì)和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質(zhì)、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.11、A【分析】根據(jù)方差的意義即可得.【詳解】方差越小,表示成績波動性越小、越穩(wěn)定觀察表格可知,甲的方差最小,則派甲去參賽更合適故選:A.【點睛】本題考查了方差的意義,掌握理解方差的意義是解題關(guān)鍵.12、C【解析】【分析】過A作AF垂直x軸,過B點作BE垂直與x軸,垂足分別為F,E,得出,可得出,再根據(jù)反比例函數(shù)的性質(zhì)得出兩個三角形的面積,繼而得出兩個三角形的相似比,再逐項判斷即可.【詳解】解:過A作AF垂直x軸,過B點作BE垂直與x軸,垂足分別為F,E,由題意可得出,繼而可得出頂點,分別在反比例函數(shù)()與()的圖象上∴∴∴∴A.,此選項錯誤,B.,此選項錯誤;C.,此選項正確;D.,此選項錯誤;故選:C.【點睛】本題考查的知識點是反比例函數(shù)的性質(zhì)以及解直角三角形,解此題的關(guān)鍵是利用反比例函數(shù)的性質(zhì)求出兩個三角形的相似比.二、填空題(每題4分,共24分)13、x1=3,x2=-1【分析】利用因式分解法解方程.【詳解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案為:x1=3,x2=-1.【點睛】此題考查一元二次方程的解法,根據(jù)方程的特點選擇適合的方法解方程是關(guān)鍵.14、【分析】用花生味湯圓的個數(shù)除以湯圓總數(shù)計算即可.【詳解】解:∵一碗湯圓,其中有4個花生味和2個芝麻味,∴從中任意吃一個,恰好吃到花生味湯圓的概率是:.故答案為.【點睛】本題考查了概率公式的應(yīng)用,如果一個事件共有n種可能,而且每一個事件發(fā)生的可能性相同,其中事件A出現(xiàn)m種可能,那么事件A的概率.15、19.2m【分析】根據(jù)在同一時物體的高度和影長成正比,設(shè)出教學(xué)樓高度即可列方程解答.【詳解】設(shè)教學(xué)樓高度為xm,列方程得:解得x=19.2,故教學(xué)樓的高度為19.2m.故答案為:19.2m.【點睛】本題考查了相似三角形的應(yīng)用,解題時關(guān)鍵是找出相等的比例關(guān)系,然后根據(jù)對應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.16、.【解析】試題分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根據(jù)相似三角形的對應(yīng)邊的比相等就可求出AD的長.試題解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考點:1.相似三角形的判定與性質(zhì);2.勾股定理.17、5【分析】設(shè)這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意建立方程求其解即可.【詳解】解:設(shè)這兩個數(shù)中的大數(shù)為x,則小數(shù)為x﹣2,由題意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴這兩個數(shù)中較大的數(shù)是5,故答案為5;考點:一元二次方程的應(yīng)用.18、1【解析】根據(jù)中位數(shù)的定義進行求解即可.【詳解】∵共有20名學(xué)生,把這些數(shù)從小到大排列,處于中間位置的是第10和11個數(shù)的平均數(shù),∴這些測試數(shù)據(jù)的中位數(shù)是=1小時;故答案為:1.【點睛】本題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)).三、解答題(共78分)19、4株【分析】根據(jù)已知假設(shè)每盆花苗增加株,則每盆花苗有株,得出平均單株盈利為元,由題意得求出即可。【詳解】解:設(shè)每盆花苗增加株,則每盆花苗有株,平均單株盈利為:元,由題意得:.化簡,整理,.解這個方程,得,,則,,每盆植入株數(shù)盡可能少,盆應(yīng)植4株.答:每盆應(yīng)植4株.【點睛】此題考查了一元二次方程的應(yīng)用,根據(jù)每盆花苗株數(shù)平均單株盈利總盈利得出方程是解題關(guān)鍵.20、(1)見解析;(2)見解析;(3)【分析】(1)通過證明△ABD∽△BCD,可得,可得結(jié)論;(2)通過和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性質(zhì)可得結(jié)論;(3)由平行線的性質(zhì)可證∠MBD=∠BDC,即可證AM=MD=MB=4,由BD2=AD?CD和勾股定理可求MC的長,通過證明△MNB∽△CND,可得.【詳解】解:(1)證明:∵DB平分∠ADC,

∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,

∴△ABD∽△BCD,∴,∴BD2=AD?CD(2)證明:∵,∴∠MBD=∠BDC,∠MBC=90°,∵∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠MBD+∠ABM=90°,∴∠ABM=∠CBD,∵∠CBD=∠A,∴∠A=∠ABM,∴MA=MB,∴MA=MD,即M為AD中點;(3)∵BM∥CD

∴∠MBD=∠BDC

∴∠ADB=∠MBD,且∠ABD=90°

∴BM=MD,∠MAB=∠MBA

∴BM=MD=AM=4

∵BD2=AD?CD,且CD=6,AD=8,

∴BD2=48,

∴BC2=BD2-CD2=12

∴MC2=MB2+BC2=28

∴MC=,∵BM∥CD

∴△MNB∽△CND∴,且MC=,∴.【點睛】本題考查了相似三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),勾股定理,直角三角形的性質(zhì),求MC的長度是本題的關(guān)鍵.21、(1)見解析;(2)【分析】,(1)連接OB,根據(jù)題意可證明△OAB∽△CAO,繼而可推出OB⊥AB,根據(jù)切線定理即可求證結(jié)論;(2)根據(jù)勾股定理可求得OA=2及A點坐標(biāo),根據(jù)相似三角形的性質(zhì)可得,進而可求CO的長及C點坐標(biāo),利用待定系數(shù)法,設(shè)直線AB對應(yīng)的函數(shù)表達式為y=kx+b,再把點A、C的坐標(biāo)代入求得k、b的值即可.【詳解】(1)證明:連接OB.∵OA2=AB?AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直線AB是⊙O的切線;(2)解:∵∠ABO=90°,,OB=1,∴,∴點A坐標(biāo)為(2,0),∵△OAB∽△CAO,∴,即,∴,∴點C坐標(biāo)為;設(shè)直線AB對應(yīng)的函數(shù)表達式為y=kx+b,則,∴∴.即直線AB對應(yīng)的函數(shù)表達式為.【點睛】本題考查相似三角形的判定及性質(zhì)、圓的切線定理、勾股定理、一次函數(shù)解析式等知識,解題的關(guān)鍵是正確理解題意,求出線段的長及各點的坐標(biāo).22、(1)w=-x2+90x-1800;(2)當(dāng)x=45時,w有最大值,最大值是225(3)該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為40元【解析】試題分析:(1)根據(jù)銷售利潤=單個利潤×銷售量,列出式子整理后即可得;(2)由(1)中的函數(shù)解析式,利用二次函數(shù)的性質(zhì)即可得;(3)將w=200代入(1)中的函數(shù)解析式,解方程后進行討論即可得.試題解析:(1)w=(x﹣30)?y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w與x之間的函數(shù)解析式w=﹣x2+90x﹣1800;(2)根據(jù)題意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,當(dāng)x=45時,w有最大值,最大值是225;(3)當(dāng)w=200時,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>42,x2=50不符合題意,舍去,答:該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應(yīng)定為40元.23、(1);(2)的值為.【分析】(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結(jié)論得到的最大整數(shù)為2,解方程解得,把和分別代入一元二次方程求出對應(yīng)的,同時滿足.【詳解】解:(1)根據(jù)題意得,解得;(2)的最大整數(shù)為2,方程變形為,解得,∵一元二次方程與方程有一個相同的根,∴當(dāng)時,,解得;當(dāng)時,,解得,而,∴的值為.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)時,方程有兩個不相等的實數(shù)根;當(dāng)時,方程有兩個相等的實數(shù)根;當(dāng)時,方程無實數(shù)根.24、(1)詳見解析;(1)詳見解析.【分析】(1)先確定拋物線的對稱軸為直線x=1+,利用二次函數(shù)的性質(zhì)得當(dāng)m>1+時,y隨x的增大而減小,從而可對(1)的結(jié)論進行判斷;(1)設(shè)拋物線與x軸的兩交的橫坐標(biāo)為x1、x1,則根據(jù)根與系數(shù)的關(guān)系得到x1+x1=,x1x1=,利用完全平方公式得到|x1﹣x1|===|1﹣|,然后m取時可對(1)的結(jié)論進行判斷.【詳解】解:(1)的結(jié)論正確.理由如下:拋物線的對稱軸為直線,∵m<0,∴當(dāng)m>1+時,y隨x的增大而減小,而1>1+,∴當(dāng)m<0時,函數(shù)y=mx1﹣(1m+1)x+1在x>1時,y隨x的增大而減小;(1)的結(jié)論錯誤.理由如下:設(shè)拋物線與x軸的兩交的橫坐標(biāo)為x1、x1,則x1+x1=,x1x1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論