版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列說法錯誤的是()A.必然事件發(fā)生的概率是1B.通過大量重復(fù)試驗,可以用頻率估計概率C.概率很小的事件不可能發(fā)生D.投一枚圖釘,“釘尖朝上”的概率不能用列舉法求得2.某林業(yè)部門要考察某幼苗的成活率,于是進行了試驗,下表中記錄了這種幼苗在一定條件下移植的成活情況,則下列說法不正確的是()移植總數(shù)400150035007000900014000成活數(shù)369133532036335807312628成活的頻率09230.89009150.9050.8970.902A.由此估計這種幼苗在此條件下成活的概率約為0.9B.如果在此條件下再移植這種幼苗20000株,則必定成活18000株C.可以用試驗次數(shù)累計最多時的頻率作為概率的估計值D.在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率3.已知下列命題:①等弧所對的圓心角相等;②90°的圓周角所對的弦是直徑;③關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則ac<0;④若二次函數(shù)y=的圖象上有兩點(-1,y1)、(2,y2),則>;其中真命題的個數(shù)是()A.1個 B.2個 C.3個 D.4個4.已知,當(dāng)﹣1≤x≤2時,二次函數(shù)y=m(x﹣1)2﹣5m+1(m≠0,m為常數(shù))有最小值6,則m的值為()A.﹣5 B.﹣1 C.﹣1.25 D.15.在反比例函數(shù)的圖象在某象限內(nèi),隨著的增大而增大,則的取值范圍是()A. B. C. D.6.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.67.如圖是小明一天看到的一根電線桿的影子的俯視圖,按時間先后順序排列正確的是()A.①②③④ B.④③②① C.④③①② D.②③④①8.如圖,菱形ABCD與等邊△AEF的邊長相等,且E、F分別在BC、CD,則∠BAD的度數(shù)是()A.80° B.90° C.100° D.120°9.把二次函數(shù),用配方法化為的形式為()A. B.C. D.10.設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+m上的三點,則y1,y2,y3的大小關(guān)系為()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y3二、填空題(每小題3分,共24分)11.如圖,在⊙O中,弦AB,CD相交于點P,∠A=30°,∠APD=65°,則∠B=_____.12.在平面直角坐標(biāo)系中,點P(2,﹣3)關(guān)于原點對稱點P′的坐標(biāo)是_____.13.把多項式分解因式的結(jié)果是__________.14.已知△ABC中,AB=10,AC=2,∠B=30°,則△ABC的面積等于_____.15.若方程有兩個相等的實數(shù)根,則m=________.16.將拋物線y=﹣5x2+1向左平移1個單位長度,再向下平移2個單位長度,所得到的拋物線的函數(shù)關(guān)系式為_____________.17.已知二次函數(shù)的圖象開口向下,且其圖象頂點位于第一象限內(nèi),請寫出一個滿足上述條件的二次函數(shù)解析式為_____(表示為y=a(x+m)2+k的形式).18.如圖,是的中線,點是線段上的一點,且,交于點.若,則_________.三、解答題(共66分)19.(10分)如圖,在中,點在邊上,且,已知,.(1)求的度數(shù);(2)我們把有一個內(nèi)角等于的等腰三角形稱為黃金三角形.它的腰長與底邊長的比(或者底邊長與腰長的比)等于黃金比.①寫出圖中所有的黃金三角形,選一個說明理由;②求的長.20.(6分)小明同學(xué)用紙板制作了一個圓錐形漏斗模型,如圖所示,它的底面半徑,高,求這個圓錐形漏斗的側(cè)面積.21.(6分)將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,在底板下面墊入散熱架O′AC后,電腦轉(zhuǎn)到AO′B′的位置(如圖3),側(cè)面示意圖為圖4,已知OA=OB=20cm,B′O′⊥OA,垂足為C.(1)求點O′的高度O′C;(精確到0.1cm)(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)多少度?參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)22.(8分)如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連結(jié)AC,過點D作DE⊥AC,垂足為E.(1)求證:AB=AC;(2)求證:DE為⊙O的切線;(3)若⊙O的半徑為5,sinB=,求DE的長.23.(8分)如圖,在四邊形ABCD中,AB⊥AD,=,對角線AC與BD交于點O,AC=10,∠ABD=∠ACB,點E在CB延長線上,且AE=AC.(1)求證:△AEB∽△BCO;(2)當(dāng)AE∥BD時,求AO的長.24.(8分)解方程:;25.(10分)如圖,在平面直角坐標(biāo)系中,已知的三個頂點的坐標(biāo)分別為,,.(1)先將豎直向下平移5個單位長度,再水平向右平移1個單位長度得到,請畫出;(2)將繞點順時針旋轉(zhuǎn),得,請畫出;(3)求線段變換到的過程中掃過區(qū)域的面積.26.(10分)如圖,直線y=x+3分別交x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內(nèi)的一個交點,PB⊥x軸于B,且S△ABP=16.(1)求證:△AOC∽△ABP;(2)求點P的坐標(biāo);(3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),作QD⊥x軸于D,當(dāng)△BQD與△AOC相似時,求點Q的橫坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、C【解析】不確定事件就是隨機事件,即可能發(fā)生也可能不發(fā)生的事件,發(fā)生的概率大于0并且小于1【詳解】A、必然事件發(fā)生的概率是1,正確;B、通過大量重復(fù)試驗,可以用頻率估計概率,正確;C、概率很小的事件也有可能發(fā)生,故錯誤;D、投一枚圖釘,“釘尖朝上”的概率不能用列舉法求得,正確,故選:C.【點睛】本題考查了概率的意義,概率的意義反映的只是這一事件發(fā)生的可能性的大小,概率取值范圍:0≤p≤1,其中必然發(fā)生的事件的概率P(A)=1;不可能發(fā)生事件的概率P(A)=0;隨機事件,發(fā)生的概率大于0并且小于1.事件發(fā)生的可能性越大,概率越接近與1,事件發(fā)生的可能性越小,概率越接近于0.2、B【分析】大量重復(fù)試驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率即可得到答案.【詳解】解:由此估計這種幼苗在此條件下成活的概率約為0.9,故A選項正確;如果在此條件下再移植這種幼苗20000株,則大約成活18000株,故B選項錯誤;可以用試驗次數(shù)累計最多時的頻率作為概率的估計值,故C選項正確;在大量重復(fù)試驗中,隨著試驗次數(shù)的增加,幼苗成活的頻率會越來越穩(wěn)定,因此可以用頻率估計概率,故D選項正確.故選:B.【點睛】本題主要考查的是利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,掌握這個知識點是解題的關(guān)鍵.3、B【分析】利用圓周角定理、一元二次方程根的判別式及二次函數(shù)的增減性分別判斷正誤后即可得到正確的選項.【詳解】解:①等弧所對的圓心角也相等,正確,是真命題;②90°的圓周角所對的弦是直徑,正確,是真命題;③關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個不相等的實數(shù)根,則b2-ac>0,但不能夠說明ac<0,所以原命題錯誤,是假命題;④若二次函數(shù)的圖象上有兩點(-1,y1)(2,y2),則y1>y2,不確定,因為a的正負(fù)性不確定,所以原命題錯誤,是假命題;其中真命題的個數(shù)是2,故選:B.【點睛】考查了命題與定理的知識,解題的關(guān)鍵是了解圓周角定理、一元二次方程根的判別式及二次函數(shù)的增減性,難度不大.4、A【分析】根據(jù)題意,分情況討論:當(dāng)二次函數(shù)開口向上時,在對稱軸上取得最小值,列出關(guān)于m的一次方程求解即可;當(dāng)二次函數(shù)開口向下時,在x=-1時取得最小值,求解關(guān)于m的一次方程即可,最后結(jié)合條件得出m的值.【詳解】解:∵當(dāng)﹣1≤x≤2時,二次函數(shù)y=m(x﹣1)2﹣5m+1(m≠0,m為常數(shù))有最小值6,∴m>0,當(dāng)x=1時,該函數(shù)取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0時,當(dāng)x=﹣1時,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故選:A.【點睛】本題考查了二次函數(shù)的最值問題,注意根據(jù)開口方向分情況討論,一次方程的列式求解,分情況討論是解題的關(guān)鍵.5、C【分析】由于反比例函數(shù)的圖象在某象限內(nèi)隨著的增大而增大,則滿足,再解不等式求出的取值范圍即可.【詳解】∵反比例函數(shù)的圖象在某象限內(nèi),隨著的增大而增大∴解得:故選:C.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì),熟練掌握圖象在各象限的變化情況跟系數(shù)之間的關(guān)系是關(guān)鍵.6、A【解析】根據(jù)圖形可以求得BF的長,然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.7、C【分析】太陽光線下的影子是平行投影,就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東,于是即可得到答案.【詳解】根據(jù)平行投影的規(guī)律以及電線桿從早到晚影子的指向規(guī)律,可知:俯視圖的順序為:④③①②,故選C.【點睛】本題主要考查平行投影的規(guī)律,掌握“就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東”,是解題的關(guān)鍵.8、C【解析】試題分析:根據(jù)菱形的性質(zhì)推出∠B=∠D,AD∥BC,根據(jù)平行線的性質(zhì)得出∠DAB+∠B=180°,根據(jù)等邊三角形的性質(zhì)得出∠AEF=∠AFE=60°,AF=AD,根據(jù)等邊對等角得出∠B=∠AEB,∠D=∠AFD,設(shè)∠BAE=∠FAD=x,根據(jù)三角形的內(nèi)角和定理得出方程x+2(180°﹣60°﹣2x)=180°,求出方程的解即可求出答案.解:∵四邊形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等邊三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的內(nèi)角和定理得:∠BAE=∠FAD,設(shè)∠BAE=∠FAD=x,則∠D=∠AFD=180°﹣∠EAF﹣(∠BAE+∠FAD)=180°﹣60°﹣2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°﹣60°﹣2x)=180°,解得:x=20°,∴∠BAD=2×20°+60°=100°,故選C.考點:菱形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的性質(zhì).9、B【分析】先提取二次項系數(shù),再根據(jù)完全平方公式整理即可.【詳解】解:;故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的最值,二次函數(shù)的三種形式的轉(zhuǎn)化,難點在于(3)判斷出二次函數(shù)取最大值時的自變量x的值.10、B【分析】本題要比較y1,y2,y3的大小,由于y1,y2,y3是拋物線上三個點的縱坐標(biāo),所以可以根據(jù)二次函數(shù)的性質(zhì)進行解答:先求出拋物線的對稱軸,再由對稱性得A點關(guān)于對稱軸的對稱點A'的坐標(biāo),再根據(jù)拋物線開口向下,在對稱軸右邊,y隨x的增大而減小,便可得出y1,y2,y3的大小關(guān)系.【詳解】∵拋物線y=﹣(x+1)2+m,如圖所示,∴對稱軸為x=﹣1,∵A(﹣2,y1),∴A點關(guān)于x=﹣1的對稱點A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右邊y隨x的增大而減小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故選:B.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)的特征,解題的關(guān)鍵是能畫出二次函數(shù)的大致圖象,據(jù)圖判斷.二、填空題(每小題3分,共24分)11、35°【分析】先根據(jù)三角形外角性質(zhì)求出∠C的度數(shù),然后根據(jù)圓周角定理得到∠B的度數(shù).【詳解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案為35°.【點睛】本題主要考查的是三角形的外角性質(zhì)以及圓周角定理,這是一道綜合性幾何題,掌握三角形的外角性質(zhì)以及圓周角定理是解題關(guān)鍵.12、(﹣2,3).【解析】根據(jù)坐標(biāo)軸的對稱性即可寫出.【詳解】解:根據(jù)中心對稱的性質(zhì),得點P(2,﹣3)關(guān)于原點的對稱點P′的坐標(biāo)是(﹣2,3).故答案為:(﹣2,3).【點睛】此題主要考查直角坐標(biāo)系內(nèi)的坐標(biāo)變換,解題的關(guān)鍵是熟知直角坐標(biāo)系的特點.13、【分析】先提取公因數(shù)y,再利用完全平方公式化簡即可.【詳解】故答案為:.【點睛】本題考查了多項式的因式分解問題,掌握完全平方公式的性質(zhì)是解題的關(guān)鍵.14、15或10【分析】作AD⊥BC交BC(或BC延長線)于點D,分AB、AC位于AD異側(cè)和同側(cè)兩種情況,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的長,繼而就兩種情況分別求出BC的長,根據(jù)三角形的面積公式求解可得.【詳解】解:作AD⊥BC交BC(或BC延長線)于點D,①如圖1,當(dāng)AB、AC位于AD異側(cè)時,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,則BC=BD+CD=6,∴S△ABC=?BC?AD=×6×5=15;②如圖2,當(dāng)AB、AC在AD的同側(cè)時,由①知,BD=5,CD=,則BC=BD-CD=4,∴S△ABC=?BC?AD=×4×5=10.綜上,△ABC的面積是15或10,故答案為15或10.【點睛】本題主要考查解直角三角形,解題的關(guān)鍵是熟練掌握三角函數(shù)的運用、分類討論思想的運算及勾股定理.15、4【解析】∵方程x2?4x+m=0有兩個相等的實數(shù)根,∴△=b2?4ac=16?4m=0,解之得,m=4故本題答案為:416、【分析】先確定出原拋物線的頂點坐標(biāo)為(0,0),然后根據(jù)向左平移橫坐標(biāo)加,向下平移縱坐標(biāo)減,求出新拋物線的頂點坐標(biāo),然后寫出即可.【詳解】拋物線的頂點坐標(biāo)為(0,0),
∵向左平移1個單位長度后,向下平移2個單位長度,
∴新拋物線的頂點坐標(biāo)為(-1,-2),
∴所得拋物線的解析式是.
故答案為:.【點睛】本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.17、y=﹣(x﹣1)2+1(答案不唯一)【解析】因為二次函數(shù)的頂點坐標(biāo)為:(-m,k),根據(jù)題意圖象的頂點位于第一象限,所以可得:m<0,k>0,因此滿足m<0,k>0的點即可,故答案為:(答案不唯一).18、【分析】過點A作AG∥BC交CF的延長線于G,根據(jù)平行即可證出△AGE∽△DCE,△AGF∽△BCF,列出比例式,根據(jù)已知條件即可求出AB.【詳解】解:過點A作AG∥BC交CF的延長線于G,如下圖所示∴△AGE∽△DCE,△AGF∽△BCF∴,∵∴∴∵是的中線,∴∴∴解得:cm∴AB=AF+BF=1cm故答案為:1.【點睛】此題考查的是相似三角形的判定及性質(zhì),掌握構(gòu)造相似三角形的方法是解決此題的關(guān)鍵.三、解答題(共66分)19、(1);(2)①有三個:,理由見解析;②.【分析】(1)設(shè),根據(jù)題意得到,由三角形的外角性質(zhì),即可求出x的值,從而得到答案;(2)①根據(jù)黃金三角形的定義,即可得到答案;②由①可知,是黃金三角形,則根據(jù)比例關(guān)系,求出,然后求出AD的長度.【詳解】解:(1),則,設(shè),則,又,,,解得:,;(2)①有三個:是黃金三角形;或,是黃金三角形;或,,又,,,是黃金三角形;②∵是黃金三角形,,,,,.【點睛】本題考查了等腰三角形的性質(zhì)以及黃金三角形的定義,三角形的內(nèi)角和定理以及三角形的外角性質(zhì),解題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì),三角形的外角性質(zhì).20、【解析】首先根據(jù)底面半徑OB=3cm,高OC=4cm,求出圓錐的母線長,再利用圓錐的側(cè)面積公式求出即可.【詳解】解:根據(jù)題意,由勾股定理可知.,圓錐形漏斗的側(cè)面積.【點睛】此題主要考查了圓錐的側(cè)面積公式求法,正確的記憶圓錐側(cè)面積公式是解決問題的關(guān)鍵.21、(1)8.5cm;(2)顯示屏的頂部B′比原來升高了10.3cm;(3)顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)25度.【解析】(1)∵B′O′⊥OA,垂足為C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A?cos∠CO′A=20?cos65°=8.46≈8.5(cm);(2)如圖2,過B作BD⊥AO交AO的延長線于D.∵∠AOB=115°,∴∠BOD=65°.∵sin∠BOD=,∴BD=OB?sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴顯示屏的頂部B′比原來升高了10.3cm;(3)如圖4,過O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴顯示屏O′B′應(yīng)繞點O′按順時針方向旋轉(zhuǎn)25度.22、(1)見解析;(2)見解析;(3).【解析】(1)連接AD,根據(jù)圓周角定理得到AD⊥BC,根據(jù)線段垂直平分線的性質(zhì)證明;(2)連接OD,根據(jù)三角形中位線定理得到OD∥AC,得到DE⊥OD,證明結(jié)論;(3)解直角三角形求得AD,進而根據(jù)勾股定理求得BD、CD,據(jù)正弦的定義計算即可求得.【詳解】(1)證明:如圖,連接AD,∵AB是⊙O的直徑,∴AD⊥BC,又DC=BD,∴AB=AC;(2)證明:如圖,連接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位線,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE為⊙O的切線;(3)解:∵AB=AC,∴∠B=∠C,∵⊙O的半徑為5,∴AB=AC=10,∵sinB==,∴AD=8,∴CD=BD==6,∴sinB=sinC==,∴DE=.【點睛】本題考查的是圓周角定理、切線的判定定理以及三角形中位線定理,掌握相關(guān)的性質(zhì)定理和判定定理是解題的關(guān)鍵.23、(1)見解析;(2)【分析】(1)根據(jù)等腰三角形的性質(zhì)得到,等量代換得到,根據(jù)三角形的內(nèi)角和和平角的性質(zhì)得到,于是得到結(jié)論;(2)過作與,過作與,根據(jù)平行線的性質(zhì)得到,,推出,求得,,得到,根據(jù)相似三角形的性質(zhì)得到,于是得到,根據(jù)平行線分線段成比例定理即可得到結(jié)論.【詳解】解:(1),,,,,,,在△AEB和△BCO中,,;(2)過作于,過作于,,,,,,,,,,,,,,,,,,,,,,,,,,,,.【點睛】本題考查了相似三角形的判定和性質(zhì),平行線分線段成比例定理,等腰三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.24、1+、1-【詳解】X=1+或者x=1-25、(1)答案見解析;(2)答案見解析;(3)【分析】(1)依據(jù)平移的方向和距離,即可得到;(2)依據(jù)旋轉(zhuǎn)的方向和距離,即可得到;(3)依據(jù)扇形的面積計算公式,即可得到線段B1C1變換到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 舞蹈表演與文化交流實習(xí)報告
- 門急診輸液管理制度
- 初級中學(xué)生物實驗室管理制度
- 麻醉管理與操作制度
- 領(lǐng)導(dǎo)班子成員管理制度
- 人教版五年級上冊語文教學(xué)計劃的目標(biāo)設(shè)定
- 企業(yè)黨支部換屆選舉流程與注意事項
- 醫(yī)院感染控制措施的自查與整改
- 學(xué)校行政值班制度職責(zé)與管理規(guī)范
- 幼兒園體格鍛煉與語言發(fā)展計劃
- 2024電子商務(wù)平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語 含答案
- 電力工程施工安全風(fēng)險評估與防控
- 醫(yī)學(xué)教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
- 智聯(lián)招聘在線測評題
- DB3418T 008-2019 宣紙潤墨性感官評判方法
- 【魔鏡洞察】2024藥食同源保健品滋補品行業(yè)分析報告
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
- 鋼筋桁架樓承板施工方案
- 2024年駐村第一書記工作總結(jié)干貨3篇
評論
0/150
提交評論