版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國南北朝時的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤2.已知集合,則集合的非空子集個數(shù)是()A.2 B.3 C.7 D.83.在正方體中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為()A. B. C. D.4.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.5.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點(diǎn)對稱6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.57.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.8.若θ是第二象限角且sinθ=,則=A. B. C. D.9.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.510.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對稱;②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號是()A.①② B.②③ C.①②④ D.②③④11.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.12.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若恒成立,則的取值范圍是___________.14.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.15.直線(,)過圓:的圓心,則的最小值是______.16.已知橢圓的離心率是,若以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,此時橢圓的方程是____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.18.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識,高二年級準(zhǔn)備成立一個環(huán)境保護(hù)興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.20.(12分)某單位準(zhǔn)備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨(dú)購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設(shè)備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.(1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?21.(12分)為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經(jīng)營戶10050150合計14060200(1)寫出選擇5個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;(3)以該小區(qū)的個體經(jīng)營戶為樣本,頻率作為概率,從全國個體經(jīng)營戶中隨機(jī)選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82822.(10分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C2、C【解析】
先確定集合中元素,可得非空子集個數(shù).【詳解】由題意,共3個元素,其子集個數(shù)為,非空子集有7個.故選:C.【點(diǎn)睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數(shù)為,非空子集有個.3、D【解析】
連接,,因為,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點(diǎn)為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點(diǎn)睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計算能力.4、D【解析】
可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計算能力,屬于基礎(chǔ)題.5、D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當(dāng),,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對稱,則解得:,故D錯誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.6、B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.7、B【解析】
為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時,最大,取得最小值此時故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.8、B【解析】由θ是第二象限角且sinθ=知:,.所以.9、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(丁)C(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.10、B【解析】
根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點(diǎn)睛】本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型11、B【解析】
由三視圖判斷出原圖,將幾何體補(bǔ)形為長方體,由此計算出幾何體外接球的直徑,進(jìn)而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復(fù)原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點(diǎn)睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎(chǔ)題.12、C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點(diǎn)睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求導(dǎo)得到,討論和兩種情況,計算時,函數(shù)在上單調(diào)遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當(dāng),即時,,則在上單調(diào)遞增,從而,故符合題意;當(dāng),即時,因為在上單調(diào)遞增,且,所以存在唯一的,使得.令,得,則在上單調(diào)遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了不等式恒成立問題,轉(zhuǎn)化為函數(shù)的最值問題是解題的關(guān)鍵.14、【解析】
先由三視圖在長方體中將其還原成直觀圖,再利用球的直徑是長方體體對角線即可解決.【詳解】由三視圖知該幾何體是一個三棱錐,如圖所示長方體對角線長為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計算能力,是一道基礎(chǔ)題.15、;【解析】
求出圓心坐標(biāo),代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【詳解】圓:的標(biāo)準(zhǔn)方程為,圓心為,由題意,即,∴,當(dāng)且僅當(dāng),即時等號成立,故答案為:.【點(diǎn)睛】本題考查用基本不等式求最值,考查圓的標(biāo)準(zhǔn)方程,解題方法是配方法求圓心坐標(biāo),“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.16、【解析】
根據(jù)題意設(shè)為橢圓上任意一點(diǎn),表達(dá)出,再根據(jù)二次函數(shù)的對稱軸與求解的關(guān)系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點(diǎn)的圓的最大半徑為,所以橢圓上的點(diǎn)到點(diǎn)的距離的最大值為.設(shè)為橢圓上任意一點(diǎn),則.所以因為的對稱軸為.(i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.此時,解得.(ii)當(dāng)時,在上單調(diào)遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點(diǎn)睛】本題主要考查了橢圓上的點(diǎn)到定點(diǎn)的距離最值問題,需要根據(jù)題意設(shè)橢圓上的點(diǎn),再求出距離,根據(jù)二次函數(shù)的對稱軸與區(qū)間的關(guān)系分析最值的取值點(diǎn)分類討論求解.屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時,.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.18、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點(diǎn),所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關(guān)鍵是證明線線平行,所以做輔助線或證明時,需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.19、(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題20、(1)(2)應(yīng)該購買21件易耗品【解析】
(1)由統(tǒng)計表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨(dú)立事件概率公式進(jìn)而求解即可;(2)由題可得X所有可能的取值為,即可求得對應(yīng)的概率,再分別討論該單位在購買設(shè)備時應(yīng)同時購買20件易耗品和21件易耗品時總費(fèi)用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設(shè)備一個月使用易耗品的件數(shù)為6和7的頻率均為;B型號的設(shè)備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號的設(shè)備一個月使用易耗品的件數(shù)為7和8的頻率分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《食品工程原理二》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《現(xiàn)代人工智能技術(shù)》2023-2024學(xué)年期末試卷
- 石河子大學(xué)《家畜繁殖學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《自動控制理論》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《建筑模型制作與工藝》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《電工與電子技術(shù)實驗》2023-2024學(xué)年期末試卷
- 光伏代理商合同范本
- 沈陽理工大學(xué)《環(huán)境設(shè)計》2021-2022學(xué)年第一學(xué)期期末試卷
- 海事法院 合同解除 典型案例
- 合同到期的續(xù)簽申請書
- MT-T 1201.1-2023 煤礦感知數(shù)據(jù)聯(lián)網(wǎng)接入規(guī)范 第1部分:安全監(jiān)控
- 胎盤早剝應(yīng)急預(yù)案演練腳本
- 四川省綿陽市某中學(xué)自主招生物理試卷(含答案)
- 2023年湖南省中小學(xué)教師系列專業(yè)技術(shù)職稱職務(wù)評審表
- 我要的是葫蘆教學(xué)設(shè)計萬冬霞(五篇)
- 常見地質(zhì)災(zāi)害及其自救方法演示文稿
- 臨戰(zhàn)轉(zhuǎn)換措施
- 氧化還原反應(yīng)電化學(xué)基礎(chǔ)
- GB/T 5269-1999傳動及輸送用雙節(jié)距精密滾子鏈和鏈輪
- GB/T 30790.8-2014色漆和清漆防護(hù)涂料體系對鋼結(jié)構(gòu)的防腐蝕保護(hù)第8部分:新建和維護(hù)技術(shù)規(guī)格書的制定
- GB/T 25217.4-2019沖擊地壓測定、監(jiān)測與防治方法第4部分:微震監(jiān)測方法
評論
0/150
提交評論