版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若點在反比例函數(shù)的圖象上,則的大小關(guān)系是()A. B. C. D.2.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數(shù)圖象是A. B.C. D.3.將化成的形式為()A. B.C. D.4.下列航空公司的標志中,是軸對稱圖形的是()A. B. C. D.5.如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點E,連接OD、OC、BE、AE,BE與OC相交于點P,AE與OD相交于點Q,已知AD=4,BC=9,以下結(jié)論:①⊙O的半徑為,②OD∥BE,③PB=,④tan∠CEP=其中正確結(jié)論有()A.1個 B.2個 C.3個 D.4個6.下列圖形中,不是中心對稱圖形的是()A. B. C. D.7.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數(shù)為()A. B. C. D.8.在一個不透明的袋中裝有個紅、黃、藍三種顏色的球,除顏色外其他都相同,佳佳和琪琪通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在左右,則袋中紅球大約有()A.個 B.個 C.個 D.個9.二次函數(shù)y=a(x+k)2+k,無論k為何實數(shù),其圖象的頂點都在()A.直線y=x上 B.直線y=﹣x上 C.x軸上 D.y軸上10.如圖,在平面直角坐標系中,已知點,,以原點為位似中心,相似比為,把縮小,則點的對應(yīng)點的坐標是()A.或 B. C. D.或11.下列各式運算正確的是()A. B. C. D.12.把二次函數(shù)配方后得()A. B.C. D.二、填空題(每題4分,共24分)13.如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點D為△ABC內(nèi)一點,∠BAD=15°,AD=6cm,連接BD,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應(yīng)點E,連接DE,DE交AC于點F,則CF的長為________cm.14.一個不透明的袋中裝有若干個紅球,為了估計袋中紅球的個數(shù),小文在袋中放入3個白球(每個球除顏色外其余都與紅球相同).搖勻后每次隨機從袋中摸出一個球,記下顏色后放回袋中,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.7左右,則袋中紅球約有_____個.15.從﹣3,﹣2,﹣1,0,1,2這6個數(shù)中任意取出一個數(shù)記作k,則既能使函數(shù)y=的圖象經(jīng)過第一、第三象限,又能使關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根的概率為_____.16.如圖,是某公園一圓形噴水池,在池中心豎直安裝一根水管OA=1.25m,A處是噴頭,水流在各個方向沿形狀相同的拋物線落下,水落地后形成一個圓,圓心為O,直徑為線段CB.建立如圖所示的平面直角坐標系,若水流路線達到最高處時,到x軸的距離為2.25m,到y(tǒng)軸的距離為1m,則水落地后形成的圓的直徑CB=_____m.17.如圖,一次函數(shù)y1=ax+b和反比例函數(shù)y2=的圖象相交于A,B兩點,則使y1>y2成立的x取值范圍是_____.18.二次函數(shù)y=x2﹣4x+3的對稱軸方程是_____.三、解答題(共78分)19.(8分)若二次函數(shù)的圖象的頂點在的圖象上,則稱為的伴隨函數(shù),如是的伴隨函數(shù).(1)若函數(shù)是的伴隨函數(shù),求的值;(2)已知函數(shù)是的伴隨函數(shù).①當點(2,-2)在二次函數(shù)的圖象上時,求二次函數(shù)的解析式;②已知矩形,為原點,點在軸正半軸上,點在軸正半軸上,點(6,2),當二次函數(shù)的圖象與矩形有三個交點時,求此二次函數(shù)的頂點坐標.20.(8分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC邊中點.點M為線段BC上的一個動點(不與點C,點D重合),連接AM,將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME,連接EC.(1)如圖1,若點M在線段BD上.①依據(jù)題意補全圖1;②求∠MCE的度數(shù).(2)如圖2,若點M在線段CD上,請你補全圖形后,直接用等式表示線段AC、CE、CM之間的數(shù)量關(guān)系.21.(8分)(1)解方程:(2)如圖,是等腰直角三角形,是斜邊,將繞點逆時針旋轉(zhuǎn)后,能與重合,如果,那么的長等于多少?22.(10分)如圖,已知:拋物線交x軸于A,C兩點,交y軸于點B,且OB=2CO.(1)求二次函數(shù)解析式;(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;(3)拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.23.(10分)如圖內(nèi)接于,,CD是的直徑,點P是CD延長線上一點,且.求證:PA是的切線;若,求的直徑.24.(10分)計算:2cos60°+4sin60°?tan30°﹣cos45°25.(12分)如圖,已知二次函數(shù)的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,頂點為點.(1)點的坐標為,點的坐標為;(用含有的代數(shù)式表示)(2)連接.①若平分,求二次函數(shù)的表達式;②連接,若平分,求二次函數(shù)的表達式.26.解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.
參考答案一、選擇題(每題4分,共48分)1、B【分析】將橫坐標代入反比例函數(shù)求出縱坐標,即可比較大小關(guān)系.【詳解】當x=?3時,y1=?1,當x=?1時,y2=?3,當x=1時,y3=3,∴y2<y1<y3故選:B.【點睛】本題考查反比例函數(shù)值的大小比較,將橫坐標代入函數(shù)解析式求出縱坐標是解題的關(guān)鍵.2、C【解析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減?。虎谙嘤龊笙蛳喾捶较蛐旭傊撂乜斓竭_甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結(jié)合圖象可得C選項符合題意.故選C.3、C【分析】本小題先將二次項的系數(shù)提出后再將括號里運用配方法配成完全平方式即可.【詳解】由得:故選C【點睛】本題考查的知識點是配方法,掌握配方的方法及防止漏乘是關(guān)鍵.4、C【分析】根據(jù)軸對稱圖形的概念判斷即可.【詳解】解:、不是軸對稱圖形,不合題意;、不是軸對稱圖形,不合題意;、是軸對稱圖形,符合題意;、不是軸對稱圖形,不合題意;故選:.【點睛】本題考查的是軸對稱圖形的概念,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、C【解析】試題解析:作DK⊥BC于K,連接OE.∵AD、BC是切線,∴∠DAB=∠ABK=∠DKB=90°,∴四邊形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切線,∴DA=DE,CE=CB=9,在RT△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半徑為1.故①錯誤,∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正確.在RT△OBC中,PB===,故③正確,∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④正確,∴②③④正確,故選C.6、B【分析】將一個圖形繞某一點旋轉(zhuǎn)180°后能與自身完全重合的圖形是中心對稱圖形,根據(jù)定義依次判斷即可得到答案.【詳解】解:A、是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項正確;C、是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項錯誤;故選:B.【點睛】此題考查中心對稱圖形的定義,熟記定義并掌握各圖形的特點是解題的關(guān)鍵.7、C【分析】根據(jù)圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數(shù).【詳解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.8、A【分析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,設(shè)出未知數(shù)列出方程求解.【詳解】設(shè)袋中有紅球x個,由題意得解得x=10,故選:A.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.9、B【解析】試題分析:根據(jù)函數(shù)解析式可得:函數(shù)的頂點坐標為(-k,k),則頂點在直線y=-x上.考點:二次函數(shù)的頂點10、D【分析】利用以原點為位似中心,相似比為k,位似圖形對應(yīng)點的坐標的比等于k或-k,把B點的橫縱坐標分別乘以或-即可得到點B′的坐標.【詳解】解:∵以原點O為位似中心,相似比為,把△ABO縮小,
∴點B(-9,-3)的對應(yīng)點B′的坐標是(-3,-1)或(3,1).
故選D.【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或-k.11、D【分析】逐一對選項進行分析即可.【詳解】A.不是同類項,不能合并,故該選項錯誤;B.,故該選項錯誤;C.,故該選項錯誤;D.,故該選項正確;故選:D.【點睛】本題主要考查同底數(shù)冪的乘除法,積的乘方,掌握同底數(shù)冪的乘除法和積的乘方的運算法則是解題的關(guān)鍵.12、B【分析】運用配方法把一般式化為頂點式即可.【詳解】解:==故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】過點A作AH⊥DE,垂足為H,由旋轉(zhuǎn)的性質(zhì)可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根據(jù)等腰直角三角形的性質(zhì)可得∠HAE=45°,AH=3,進而得∠HAF=30°,繼而求出AF長即可求得答案.【詳解】過點A作AH⊥DE,垂足為H,∵∠BAC=90°,AB=AC,將△ABD繞點A逆時針方向旋轉(zhuǎn),使AB與AC重合,點D的對應(yīng)點E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案為.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解直角三角形等知識,正確添加輔助線構(gòu)建直角三角形、靈活運用相關(guān)知識是解題的關(guān)鍵.14、1【分析】根據(jù)口袋中有3個白球,利用小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】解:∵通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.1,口袋中有3個白球,∵假設(shè)有x個紅球,∴,解得:x=1,經(jīng)檢驗x=1是方程的根,∴口袋中有紅球約有1個.故答案為:1.【點睛】此題主要考查了用樣本估計總體,根據(jù)已知得出小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等是解決問題的關(guān)鍵.15、.【分析】確定使函數(shù)的圖象經(jīng)過第一、三象限的k的值,然后確定使方程有實數(shù)根的k值,找到同時滿足兩個條件的k的值即可.【詳解】解:這6個數(shù)中能使函數(shù)y=的圖象經(jīng)過第一、第三象限的有1,2這2個數(shù),∵關(guān)于x的一元二次方程x2﹣kx+1=0有實數(shù)根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能滿足這一條件的數(shù)是:﹣3、﹣2、2這3個數(shù),∴能同時滿足這兩個條件的只有2這個數(shù),∴此概率為,故答案為:.16、1【分析】設(shè)y軸右側(cè)的拋物線解析式為:y=a(x?1)2+2.21,將A(0,1.21)代入,求得a,從而可得拋物線的解析式,再令函數(shù)值為0,解方程可得點B坐標,從而可得CB的長.【詳解】解:設(shè)y軸右側(cè)的拋物線解析式為:y=a(x﹣1)2+2.21∵點A(0,1.21)在拋物線上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴拋物線的解析式為:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴點B坐標為(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案為:1.【點睛】本題考查了二次函數(shù)在實際問題中的應(yīng)用,明確二次函數(shù)的相關(guān)性質(zhì)及正確的解方程,是解題的關(guān)鍵.17、x<﹣2或0<x<1【分析】根據(jù)兩函數(shù)圖象的上下位置關(guān)系結(jié)合交點橫坐標即可找出不等式的解集,此題得解.【詳解】解:觀察函數(shù)圖象可發(fā)現(xiàn):當x<-2或0<x<1時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使y1>y2成立的x取值范圍是當x<-2或0<x<1.故答案為當x<-2或0<x<1.【點睛】本題是一道一次函數(shù)與反比例函數(shù)相結(jié)合的題目,根據(jù)圖象得出一次函數(shù)與反比例函數(shù)交點橫坐標是解題的關(guān)鍵.18、x=1【分析】二次函數(shù)y=ax1+bx+c的對稱軸方程為x=﹣,根據(jù)對稱軸公式求解即可.【詳解】解:∵y=x1﹣4x+3,∴對稱軸方程是:x=﹣=1.故答案為:x=1.【點睛】本題考查了根據(jù)二次函數(shù)的一般式求對稱軸的公式,需要熟練掌握.三、解答題(共78分)19、(1);(2)①或;②頂點坐標是(1,3)或(4,6).【分析】(1)將函數(shù)的圖象的頂點坐標是(1,1),代入即可求出t的值;(2)①設(shè)二次函數(shù)為,根據(jù)伴隨函數(shù)定義,得出代入二次函數(shù)得到:,把(2,-2),即可得出答案;②由①可知二次函數(shù)為,把(0,2)代入,得出h的值,進行取舍即可,把(6,2)代入得出h的值,進行取舍即可.【詳解】解:(1)函數(shù)的圖象的頂點坐標是(1,1),把,代入,得,解得:.(2)①設(shè)二次函數(shù)為.二次函數(shù)是的伴隨函數(shù),,二次函數(shù)為,把,代入得,,二次函數(shù)的解析式是或.②由①可知二次函數(shù)為,把(0,2)代入,得,解得,當時,二次函數(shù)的解析式是,頂點是(0,2)由于此時與矩形有三個交點時只有兩個交點∴不符合題意,舍去∴當時,二次函數(shù)的解析式是,頂點坐標為(1,3).把(6,2)代入得,解得,,當時,二次函數(shù)的解析式是,頂點是(9,11)由于此時與矩形有三個交點時只有兩個交點∴不符合題意,舍去∴當時,二次函數(shù)的解析式是,頂點坐標為(4,6).綜上所述:頂點坐標是(1,3)或(4,6).【點睛】本題考查了新型函數(shù)的定義,掌握待定系數(shù)法求函數(shù)解析式,是解題的關(guān)鍵.20、(1)①見解析;②∠MCE=∠F=45°;(2)【分析】(1)①依據(jù)題意補全圖即可;②過點M作BC邊的垂線交CA延長線于點F,利用同角的余角相等,得到∠FMA=∠CME,再通過等腰三角形的判定得到FM=MC,再通過判斷,得到∠MCE的度數(shù).(2)通過證明,得到AF=EC,將轉(zhuǎn)化為,再在Rt△FMC中,利用邊角關(guān)系求出FC=,即可得到.【詳解】(1)①補全圖1:②解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FMA+∠AMC=90°∵將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME∴∠AME=90°,AM=ME∴∠CME+∠AMC=90°∴∠FMA=∠CME∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠F=∠FCM=45°∴FM=MC在△FMA和△CME中∴∴∠MCE=∠F=45°(2)解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FME+∠EMC=90°∵將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME∴∠AME=90°,AM=ME∴∠FME+∠AMF=90°∴∠EMC=∠AMF∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠MFC=90°-∠FCM=45°∴FM=MC在△FMA和△CME中∴∴AF=EC∴∵∠FCM=45°,∠FMC=90°∴FC=∴綜上所述,【點睛】本題是旋轉(zhuǎn)圖形考查,掌握旋轉(zhuǎn)前后不變的量是解答此題的關(guān)鍵,涉及到的知識點相似的判定及性質(zhì)、等腰三角形的性質(zhì)等.21、(1)=1,=5;(2)2【詳解】(1)解:(x﹣1)(x﹣5)=0x﹣1=0或x﹣5=0∴,,(2)解:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∵△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,∴AP=AP′,∠PAP′=∠BAC=90°,∴△APP′為等腰直角三角形,∴PP′=AP=2.【點睛】本題考查了解一元二次方程,等腰直角三角形,旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰直角三角形的性質(zhì).22、(1)y;(2);(3)(1,-3)或(1,)或(1,1+)或(1,1-)【分析】(1)利用待定系數(shù)法求出A、B、C的坐標,然后把B點坐標代入,求出a的值,并化簡二次函數(shù)式即可;(2)設(shè)點M的坐標為(m,),則點N的坐標為(2-m),可得,GM=,利用矩形MNHG的周長=2MN+2GM,化簡可得,即當時,C有最大值,最大值為,(3)分三種情況討論:①點P在AB的下方,②點P在AB的上方,③以AB為直徑作圓與對稱軸交,分別討論得出結(jié)果即可.【詳解】(1)對于拋物線y=a(x+1)(x-3),令y=0,得到a(x+1)(x-3)=0,解得x=-1或3,∴C(-1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x-3)中得:2=-3a,a=-∴二次函數(shù)解析式為(2)設(shè)點M的坐標為(m,),則點N的坐標為(2-m,),,GM=矩形MNHG的周長C=2MN+2GM=2(2m-2)+2()==∴當時,C有最大值,最大值為,(3)∵A(3,0),B(0,2),
∴OA=3,OB=2,
由對稱得:拋物線的對稱軸是:x=1,
∴AE=3-1=2,
設(shè)拋物線的對稱軸與x軸相交于點E,當△ABP為直角三角形時,存在以下三種情況:①如圖1,當∠BAP=90°時,點P在AB的下方,
∵∠PAE+∠BAO=∠BAO+∠ABO=90°,
∴∠PAE=∠ABO,
∵∠AOB=∠AEP,
∴△ABO∽△PAE,
∴,即,∴PE=3,
∴P(1,-3);
②如圖2,當∠PBA=90°時,點P在AB的上方,過P作PF⊥y軸于F,
同理得:△PFB∽△BOA,∴,即,∴∴,∴P(1,);③如圖3,以AB為直徑作圓與對稱軸交于P1、P2,則∠AP1B=∠AP2B=90°,
設(shè)P1(1,y),
∵AB2=22+32=13,
由勾股定理得:AB2=P1B2+P1A2,
∴,
解得:,∴P(1,1+)或(1,1-)綜上所述,點P的坐標為(1,-3)或(1,)或(1,1+)或(1,1-)【點睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、直角三角形的性質(zhì)、三角形相似的性質(zhì)和判定、勾股定理等知識,解題的關(guān)鍵是靈活運用學(xué)過的知識解決問題,學(xué)會構(gòu)建二次函數(shù),利用配方法確定線段的最值,與方程相結(jié)合,并利用分類討論的思想.23、(1)詳見解析;(2)的直徑為.【解析】連接OA,根據(jù)圓周角定理求出,再根據(jù)同圓的半徑相等從而可得,繼而根據(jù)等腰三角形的性質(zhì)可得出,繼而由,可得出,從而得出結(jié)論;利用含的直角三角形的性質(zhì)求出,可得出,再由,可得出的直徑.【詳解】連接OA,如圖,,,又,,又,,,,是的切線.在中,,,又,,,.的直徑為.【點睛】本題考查了切線的判定、圓周角定理、含30度角的直角三角形的性質(zhì),熟練掌握切線的判定定理、圓周角定理及含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.24、3﹣.【分析】直接利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)生會文藝部工作計劃文藝部個人工作計劃書
- 2025年定點扶貧工作計劃
- 2025學(xué)??倓?wù)處工作計劃例文
- 葫蘆絲教學(xué)計劃
- 幼兒園學(xué)前班個人計劃
- 如何寫好一份商業(yè)計劃書
- 銷售后勤工作計劃范文
- 《骨關(guān)節(jié)創(chuàng)傷圖》課件
- 《民法基礎(chǔ)知識》課件
- 《外匯儲備》課件
- GA/T 2137-2024法庭科學(xué)工業(yè)大麻及其加工產(chǎn)品中Δ9-四氫大麻酚等4種成分檢驗液相色譜和液相色譜-質(zhì)譜法
- 太陽和蜉蝣(2022年浙江紹興中考語文試卷記敘文閱讀題及答案)
- 部隊教學(xué)法教案模板范文頭部包扎
- 【建設(shè)方案】虛擬電廠及管控管理平臺建設(shè)總體方案
- 2024年中考道法一輪復(fù)習(xí)七年級上冊 綜合測試(解析版)
- 必修五unit4-倒裝句市公開課一等獎省賽課微課金獎?wù)n件
- 《讀書 目的和前提》《上圖書館》導(dǎo)學(xué)案
- UI設(shè)計理論與實踐智慧樹知到期末考試答案章節(jié)答案2024年湖南應(yīng)用技術(shù)學(xué)院
- 2023-2024學(xué)年山東省青島市市北區(qū)六年級(上)期中英語試卷
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案(97分)
- AED使用指南課件
評論
0/150
提交評論