2022屆廣東省中山市普通高中高三第六次模擬考試數(shù)學試卷含解析_第1頁
2022屆廣東省中山市普通高中高三第六次模擬考試數(shù)學試卷含解析_第2頁
2022屆廣東省中山市普通高中高三第六次模擬考試數(shù)學試卷含解析_第3頁
2022屆廣東省中山市普通高中高三第六次模擬考試數(shù)學試卷含解析_第4頁
2022屆廣東省中山市普通高中高三第六次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.2.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.3.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.84.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.35.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.6.已知,則下列不等式正確的是()A. B.C. D.7.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.58.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件9.已知向量,,若,則()A. B. C. D.10.已知隨機變量滿足,,.若,則()A., B.,C., D.,11.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.12.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-32二、填空題:本題共4小題,每小題5分,共20分。13.己知函數(shù),若曲線在處的切線與直線平行,則__________.14.已知非零向量的夾角為,且,則______.15.已知,滿足,則的展開式中的系數(shù)為______.16.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.18.(12分)設函數(shù)f(x)=x2?4xsinx?4cosx.(1)討論函數(shù)f(x)在[?π,π]上的單調性;(2)證明:函數(shù)f(x)在R上有且僅有兩個零點.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.20.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).22.(10分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.2.A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.3.B【解析】

取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數(shù)量積的運算性質進行求解.4.C【解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.5.A【解析】

根據(jù)向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數(shù)量積的運算,向量數(shù)量積的性質,屬于中檔題.6.D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.7.D【解析】

根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎題.8.A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標表示,屬于基礎題.9.A【解析】

利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.10.B【解析】

根據(jù)二項分布的性質可得:,再根據(jù)和二次函數(shù)的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數(shù)的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數(shù)的性質的應用,還考查了理解辨析的能力,屬于中檔題.11.D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.12.A【解析】

利用等差數(shù)列的求和公式及等差數(shù)列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質,等差數(shù)列的等和性應用能快速求得結果.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先求導,再根據(jù)導數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結合思想,屬于基礎題.14.1【解析】

由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,

可得,

解得,

故答案為:1.【點睛】本題考查根據(jù)向量的數(shù)量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎題.15.1【解析】

根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.16.【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)最小值為,此時;(2)見解析【解析】

(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點睛】本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函數(shù)的最值,屬于中檔題.18.見解析【解析】

(1)f(x)=2x?4xcosx?4sinx+4sinx=,由f(x)=1,x∈[?π,π]得x=1或或.當x變化時,f(x)和f(x)的變化情況如下表:x1f(x)?1+1?1+f(x)單調遞減極小值單調遞增極大值單調遞減極小值單調遞增所以f(x)在區(qū)間,上單調遞減,在區(qū)間,上單調遞增.(2)由(1)得極大值為f(1)=?4;極小值為f()=f()<f(1)<1.又f(π)=f(?π)=π2+4>1,所以f(x)在,上各有一個零點.顯然x∈(π,2π)時,?4xsinx>1,x2?4cosx>1,所以f(x)>1;x∈[2π,+∞)時,f(x)≥x2?4x?4>62?4×6?4=8>1,所以f(x)在(π,+∞)上沒有零點.因為f(?x)=(?x)2?4(?x)sin(?x)?4cos(?x)=x2?4xsinx?4cosx=f(x),所以f(x)為偶函數(shù),從而x<?π時,f(x)>1,即f(x)在(?∞,?π)上也沒有零點.故f(x)僅在,上各有一個零點,即f(x)在R上有且僅有兩個零點.19.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項性質和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.20.(1)見解析;(2).【解析】

(1)利用中位線的性質得出,然后利用線面平行的判定定理可證明出平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點,所以.又因為平面,平面,所以平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,則,,,,,,,.設平面的法向量為,則,即,令,則,,所以.設直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成的角,考查推理能力與計算能力,屬于中等題.21.(1)(2)答案不唯一具體見解析【解析】

(1)利用導數(shù)的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質為同一條,從而得到方程組,再構造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導后得,對分三種情況進行一級討論,即,,,結合函數(shù)圖象的單調性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調遞增,在上單調遞減,∴,于是,.(2),①當時,恒成立,在上單調遞增,且,∴函數(shù)在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤?,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當時,單調遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當時,函數(shù)沒有零點;當或時,函數(shù)恰有一個零點;當時,恰有兩個零點.【點睛】本題考查導數(shù)的幾何意義、切線方程、零點等知識,求解切線有關問題時,一定要明確切點坐標.以導數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論