2021年高考數學真題和模擬題分類匯編專題15推理與證明【含答案】_第1頁
2021年高考數學真題和模擬題分類匯編專題15推理與證明【含答案】_第2頁
2021年高考數學真題和模擬題分類匯編專題15推理與證明【含答案】_第3頁
2021年高考數學真題和模擬題分類匯編專題15推理與證明【含答案】_第4頁
2021年高考數學真題和模擬題分類匯編專題15推理與證明【含答案】_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題15推理與證明/r/n一、選擇題部分/r/n1/r/n./r/n(2021?貴州畢節(jié)三模/r/n?文/r/nT/r/n9/r/n./r/n)/r/n如/r/n圖,有甲、乙、丙三個盤子和放在甲盤子中的四塊大小不相同的餅,按下列規(guī)則把餅從甲盤全部移到乙盤中:/r/n①/r/n每次只能移動一塊餅;/r/n②/r/n較大的餅不能放在較小的餅上面,則最少需要移動的次數為()/r/nA/r/n./r/n7/r/n /r/nB/r/n./r/n8/r/n /r/nC/r/n./r/n15/r/n /r/nD/r/n./r/n16/r/nC/r/n./r/n假設甲盤中有/r/nn/r/n塊餅,從甲盤移動到乙盤至少需要/r/na/r/nn/r/n次,則/r/na/r/n1/r/n=/r/n1/r/n,/r/n當/r/nn/r/n≥/r/n2/r/n時,可先將較大的餅不動,將剩余的/r/nn/r/n﹣/r/n1/r/n塊餅先移動到丙盤中,至少需要移動/r/na/r/nn/r/n﹣/r/n1/r/n次,/r/n再將最大的餅移動到乙盤,需要移動/r/n1/r/n次,/r/n最后將丙盤中所有的丙移動到乙盤中,至少需要移動/r/na/r/nn/r/n﹣/r/n1/r/n次,/r/n由上可知,/r/na/r/nn/r/n=/r/n2/r/na/r/nn/r/n﹣/r/n1/r/n+1/r/n,且/r/na/r/n1/r/n=/r/n1/r/n,/r/n所以/r/na/r/n2/r/n=/r/n2/r/na/r/n1/r/n+1/r/n=/r/n3/r/n,/r/na/r/n3/r/n=/r/n2/r/na/r/n2/r/n+1/r/n=/r/n7/r/n,/r/na/r/n4/r/n=/r/n2/r/na/r/n3/r/n+1/r/n=/r/n15/r/n,/r/n則最少需要移動的次數為/r/n15/r/n次./r/n2.(2021?貴州畢節(jié)三模?文T/r/n5/r/n.)/r/n“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,共得到/r/n60/r/n個組合,稱六十甲子,周而復始,無窮無盡./r/n2021/r/n年是“干支紀年法”中的辛丑年,那么/r/n2015/r/n年是“干支紀年法”中的()/r/nA/r/n.甲辰年/r/n /r/nB/r/n.乙巳年/r/n /r/nC/r/n.丙午年/r/n /r/nD/r/n.乙未年/r/nD/r/n./r/n由題意可知,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,/r/n子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”,/r/n2021/r/n年是“干支紀年法”中的辛丑年,/r/n則/r/n2020/r/n年為庚子,/r/n2019/r/n年為己亥,/r/n2018/r/n年為戊戌,/r/n2017/r/n年為丁酉,/r/n2016/r/n年為丙申,/r/n2015/r/n年為乙未./r/n3.(2021?江西九江二模?理T/r/n9/r/n.)/r/n古希臘畢達哥拉斯學派認為數是萬物的本源,因此極為重視/r/n數的理論研究,他們常把數描繪成沙灘上的沙?;蛐∈?,并將它們排列成各種形狀進行研究.形數就是指平面上各種規(guī)則點陣所對應的點數,是畢哥拉斯學派最早研究的重要內容之一.如圖是三角形數和四邊形數的前四個數,若三角形數組成數列/r/n{/r/na/r/nn/r/n}/r/n,四邊形數組成數列/r/n{/r/nb/r/nn/r/n}/r/n,記/r/nc/r/nn/r/n=/r/n,則數列/r/n{c/r/nn/r/n}/r/n的前/r/n10/r/n項和為()/r/nA/r/n./r/n /r/nB/r/n./r/n /r/nC/r/n./r/n /r/nD/r/n./r/nD/r/n./r/n由題意可得,/r/n,/r/n,/r/n所以/r/n,/r/n設數列/r/n{c/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,/r/n所以/r/n,/r/n所以/r/n./r/n4/r/n.(2021/r/n?山東濰坊二模?/r/nT6/r/n./r/n)/r/n關/r/n于函數/r/nf/r/n(/r/nx/r/n)=/r/n,其中/r/na/r/n,/r/nb/r/n∈/r/nR/r/n,給出下列四個結論:/r/n甲:/r/n6/r/n是該函數的零點;/r/n乙:/r/n4/r/n是該函數的零點;/r/n丙:該函數的零點之積為/r/n0/r/n;/r/n?。悍匠?r/nf/r/n(/r/nx/r/n)=/r/n有兩個根./r/n若上述四個結論中有且只有一個結論錯誤,則該錯誤結論是()/r/nA/r/n.甲/r/n /r/nB/r/n.乙/r/n /r/nC/r/n.丙/r/n /r/nD/r/n.丁/r/nB/r/n./r/n當/r/nx/r/n∈/r/n[0/r/n,/r/n2]/r/n時,/r/nf/r/n(/r/nx/r/n)=/r/n2/r/nx/r/n﹣/r/na/r/n為增函數,/r/n當/r/nx/r/n∈/r/n[2/r/n,/r/n+/r/n∞)時,/r/nf/r/n(/r/nx/r/n)=/r/nb/r/n﹣/r/nx/r/n為減函數,故/r/n6/r/n和/r/n4/r/n只有一個是函數的零點,/r/n即甲乙中有一個結論錯誤,一個結論正確,而丙、丁均正確./r/n由兩零點之積為/r/n0/r/n,則必有一個零點為/r/n0/r/n,則/r/nf/r/n(/r/n0/r/n)=/r/n2/r/n0/r/n﹣/r/na/r/n=/r/n0/r/n,得/r/na/r/n=/r/n1/r/n,/r/n若甲正確,則/r/nf/r/n(/r/n6/r/n)=/r/n0/r/n,即/r/nb/r/n﹣/r/n6/r/n=/r/n0/r/n,/r/nb/r/n=/r/n6/r/n,/r/n可得/r/nf/r/n(/r/nx/r/n)=/r/n,由/r/nf/r/n(/r/nx/r/n)=/r/n,/r/n可得/r/n或/r/n,解得/r/nx/r/n=/r/n或/r/nx/r/n=/r/n,方程/r/nf/r/n(/r/nx/r/n)=/r/n有兩個根,故丁正確./r/n故甲正確,乙錯誤./r/n二、填空題部分/r/n5/r/n.(2021/r/n?山西調研二模?文/r/nT/r/n14/r/n)某/r/n校團委為高三學生籌備十八歲成人禮策劃了三種活動方案,分別記作/r/nA/r/n、/r/nB/r/n、/r/nC/r/n,為使活動開展得更加生動有意義,現(xiàn)隨機調查甲、乙、丙三位同學對三種活動方案的喜歡程度/r/n./r/n甲說:/r/n“/r/n我不喜歡方案/r/nA/r/n,但喜歡的活動方案比乙多/r/n./r/n”/r/n乙說:/r/n“/r/n我不喜歡方案/r/nB./r/n”/r/n丙說:/r/n“/r/n我們三人都喜歡同一種方案/r/n”/r/n./r/n由此可以判斷乙喜歡的活動方案是/r/n______./r/nC/r/n./r/n從丙的說法中推測乙肯定有喜歡的方案,/r/n

從甲的說法中推測甲喜歡/r/n2/r/n種方案,不喜歡方案/r/nA/r/n,那么可以確定是/r/nB/r/n和/r/nC/r/n,/r/n

再從乙的說法中可知,乙只喜歡一種方案,是方案/r/nC/r/n,/r/n

故/r/nC./r/n

/r/n根據三個人所說內容,可以推斷出乙只喜歡一種方案,又丙說:/r/n“/r/n我們三人都喜歡同一種方案/r/n”/r/n,所以可以判斷乙喜歡的活動方案./r/n

本題主要考查了簡單的合情推理,考查了學生的邏輯推理能力,是基礎題./r/n

/r/n6.(2021?山東聊城三模?T/r/n13./r/n)/r/n數列/r/n1/r/n,/r/n1/r/n,/r/n2/r/n,/r/n3/r/n,/r/n5/r/n,/r/n8/r/n,/r/n13/r/n,/r/n21/r/n,/r/n34/r/n,/r/n…/r/n稱為斐波那契數列,是意大利著名數學家斐波那契于/r/n1202/r/n年在他寫的《算盤全書》提出的,該數列的特點是:從第三起,每一項都等于它前面兩項的和.在該數列的前/r/n2021/r/n項中,奇數的個數為/r/n________/r/n./r/n1348/r/n./r/n【考點】進行簡單的合情推理/r/n由斐波那契數列的特點知:從第一項起,每/r/n3/r/n個數中前兩個為奇數后一個偶數,/r/n∵/r/n2021/r/n3/r/n的整數部分為/r/n673/r/n,余數為/r/n2/r/n∴/r/n該數列的前/r/n2021/r/n項中共有/r/n673/r/n個偶數,奇數的個數為/r/n2021/r/n-/r/n故/r/n1348/r/n

/r/n【分析】由斐波那契數列的特點經過推理即可求得/r/n./r/n三、解答題部分/r/n7.(2021?高考全國甲卷?理T18)/r/n已知數列/r/n的各項均為正數,記/r/n為/r/n的前/r/nn/r/n項和,從下面①②③中選取兩個作為條件,證明另外一個成立./r/n①數列/r/n是等差數列:②數列/r/n是等差數列;③/r/n./r/n注:若選擇不同的組合分別解答,則按第一個解答計分./r/n選①②作條件證明③時,可設出/r/n,結合/r/n的關系求出/r/n,利用/r/n是等差數列可證/r/n;/r/n選①③作條件證明②時,根據等差數列的求和公式表示出/r/n,結合等差數列定義可證;/r/n選②③作條件證明①時,設出/r/n,結合/r/n的關系求出/r/n,根據/r/n可求/r/n,然后可證/r/n是等差數列./r/n選①②作條件證明③:/r/n設/r/n,則/r/n,/r/n當/r/n時,/r/n;/r/n當/r/n時,/r/n;/r/n因為/r/n也是等差數列,所以/r/n,解得/r/n;/r/n所以/r/n,所以/r/n./r/n選①③作條件證明②:/r/n因為/r/n,/r/n是等差數列,/r/n所以公差/r/n,/r/n所以/r/n,即/r/n,/r/n因為/r/n,/r/n所以/r/n是等差數列./r/n選②③作條件證明①:/r/n設/r/n,則/r/n,/r/n當/r/n時,/r/n;/r/n當/r/n時,/r/n;/r/n因為/r/n,所以/r/n,解得/r/n或/r/n;/r/n當/r/n時,/r/n,當/r/n時,/r/n滿足等差數列的定義,此/r/n時/r/n為等差數列;/r/n當/r/n時,/r/n,/r/n不合題意,舍去./r/n綜上可知/r/n為等差數列./r/n8.(2021?江蘇鹽城三模?T/r/n18/r/n)/r/n請在/r/n①/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(1)/r/n=/r/n\/r/nr/r/n(,2)/r/n;/r/n②/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(1)/r/n=/r/n2/r/n;/r/n③/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(1)/r/n=/r/n3/r/n這/r/n3/r/n個條件中選擇/r/n1/r/n個條件,補全下面的命題使其成為真命題,并證明這個命題/r/n(/r/n選擇多個條件并分別證明的按前/r/n1/r/n個評分/r/n)/r/n./r/n已知數列/r/neq/r/n{/r/na/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)}/r/n滿足/r/na/r/nn/r/n+/r/n1/r/n=/r/na/r/nn/r/n2/r/n,若,則當/r/nn/r/n≥/r/n2/r/n時,/r/na/r/nn/r/n≥/r/n2/r/nn/r/n恒成立./r/n【考點】數列的通項公式求解與不等式的證明/r/n選/r/n②/r/n./r/n證明:由/r/na/r/nn/r/n+/r/n1/r/n=/r/na/r/nn/r/n2/r/n,且/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(1)/r/n=/r/n2/r/n,所以/r/na/r/nn/r/n>/r/n0/r/n,/r/n所以/r/nlg/r/na/r/nn/r/n+/r/n1/r/n=/r/nlg/r/na/r/nn/r/n,/r/nlg/r/na/r/nn/r/n=/r/nEQ/r/n2\/r/nS/r/n\/r/nUP/r/n6(/r/nn/r/n-/r/n1)/r/nlg2/r/n,/r/na/r/nn/r/n=/r/nEQ/r/n2\/r/nS/r/n\/r/nUP/r/n6(2\/r/nS/r/n\/r/nUP/r/n6(/r/nn/r/n-/r/n1)/r/n,/r/n……/r/n5/r/n分/r/n當/r/nn/r/n≥/r/n2/r/n時,只需證明/r/nEQ/r/n2\/r/nS/r/n\/r/nUP/r/n6(/r/nn/r/n-/r/n1)/r/n≥/r/nn/r/n,/r/n令/r/nb/r/nn/r/n=/r/nEQ/r/n\/r/nF/r/n(/r/nn/r/n,/r/n2/r/n\/r/nS/r/n\/r/nUP/r/n6/r/n(/r/nn/r/n-/r/n1/r/n)/r/n,則/r/nb/r/nn/r/n+/r/n1/r/n-/r/nb/r/nn/r/n=/r/nEQ/r/n\/r/nF/r/n(/r/nn/r/n+/r/n1,/r/n2/r/n\/r/nS/r/n\/r/nUP/r/n6/r/n(/r/nn/r/n)/r/n-/r/nEQ/r/n\/r/nF/r/n(/r/nn/r/n,/r/n2/r/n\/r/nS/r/n\/r/nUP/r/n6/r/n(/r/nn/r/n-/r/n1/r/n)/r/n=/r/nEQ/r/n\/r/nF/r/n(1/r/n-/r/nn/r/n,/r/n2/r/n\/r/nS/r/n\/r/nUP/r/n6/r/n(/r/nn/r/n)/r/n</r/n0/r/n,/r/n……/r/n10/r/n分/r/n所以/r/nb/r/nn/r/n≤/r/nb/r/n2/r/n=/r/n1/r/n,所以/r/nEQ/r/n2\/r/nS/r/n\/r/nUP/r/n6(/r/nn/r/n-/r/n1)/r/n≥/r/nn/r/n成立/r/n./r/n綜上所述,當/r/na/r/n1/r/n=/r/n2/r/n且/r/nn/r/n≥/r/n2/r/n時,/r/na/r/nn/r/n≥/r/n2/r/nn/r/n成立./r/n……/r/n12/r/n分/r/n注:選/r/n②/r/n為假命題,不得分,選/r/n③/r/n參照給分./r/n9.(2021?河南開封三模?理T/r/n17/r/n)/r/n已知數列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n1/r/n=﹣/r/n2/r/n,/r/na/r/nn/r/n+1/r/n=/r/n2/r/na/r/nn/r/n+4/r/n./r/n(/r/n1/r/n)求/r/na/r/n2/r/n,/r/na/r/n3/r/n,/r/na/r/n4/r/n;/r/n(/r/n2/r/n)猜想/r/n{/r/na/r/nn/r/n}/r/n的通項公式并加以證明;/r/n(/r/n3/r/n)求數列/r/n{|/r/na/r/nn/r/n|}/r/n的前/r/nn/r/n項和/r/nS/r/nn/r/n./r/n(/r/n1/r/n)由已知,易得/r/na/r/n2/r/n=/r/n0/r/n,/r/na/r/n3/r/n=/r/n4/r/n,/r/na/r/n4/r/n=/r/n12/r/n./r/n(/r/n2/r/n)猜想/r/n./r/n因為/r/na/r/nn/r/n+1/r/n=/r/n2/r/na/r/nn/r/n+4/r/n,所以/r/na/r/nn/r/n+1/r/n+4/r/n=/r/n2/r/n(/r/na/r/nn/r/n+4/r/n),/r/n,/r/n則/r/n{/r/na/r/nn/r/n+4}/r/n是以/r/n2/r/n為首項,以/r/n2/r/n為公比的等比數列,/r/n所以/r/n,所以=/r/n./r/n(/r/n3/r/n)當/r/nn/r/n=/r/n1/r/n時,/r/na/r/n1/r/n=﹣/r/n2/r/n</r/n0/r/n,/r/nS/r/n1/r/n=/r/n|/r/na/r/n1/r/n|/r/n=/r/n2/r/n;/r/n當/r/nn/r/n≥/r/n2/r/n時,/r/na/r/nn/r/n≥/r/n0/r/n,/r/n所以/r/n=/r/n,/r/n又/r/nn/r/n=/r/n1/r/n時滿足上式./r/n所以,當/r/nn/r/n∈/r/nN/r/n*/r/n時,/r/n./r/n10.(2021?浙江杭州二模?理T/r/n20/r/n.)已/r/n知數列/r/n{/r/na/r/nn/r/n}/r/n,/r/n{/r/nb/r/nn/r/n}/r/n,滿足/r/na/r/nn/r/n=/r/n2/r/nn/r/n﹣/r/n2/r/n,/r/nb/r/n2/r/nk/r/n﹣/r/n1/r/n=/r/na/r/nk/r/n(/r/nk/r/n∈/r/nN/r/n*/r/n),/r/nb/r/n2/r/nk/r/n﹣/r/n1/r/n,/r/nb/r/n2/r/nk/r/n,/r/nb/r/n2/r/nk/r/n+1/r/n成等差數列./r/n(/r/n1/r/n)證明:/r/n{/r/nb/r/n2/r/nk/r/n}/r/n是等比數列;/r/n(/r/n2/r/n)數列/r/n{c/r/nn/r/n}/r/n滿足/r/nc/r/nn/r/n=/r/n,記數列/r/n{c/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,求/r/nS/r/nn/r/n./r/n證明:(/r/n1/r/n)由數列/r/n{/r/na/r/nn/r/n}/r/n,/r/n{/r/nb/r/nn/r/n}/r/n,滿足/r/na/r/nn/r/n=/r/n2/r/nn/r/n﹣/r/n2/r/n,/r/nb/r/n2/r/nk/r/n﹣/r/n1/r/n=/r/na/r/nk/r/n(/r/nk/r/n∈/r/nN/r/n*/r/n),/r/n所以/r/n,/r/n由于/r/nb/r/n2/r/nk/r/n﹣/r/n1/r/n,/r/nb/r/n2/r/nk/r/n,/r/nb/r/n2/r/nk/r/n+1/r/n成等差數列./r/n故/r/n,/r/n整理得/r/n(常數),/r/n所以數列:/r/n{/r/nb/r/n2/r/nk/r/n}/r/n是以/r/n為首項,公比為/r/n2/r/n的等比數列;/r/n(/r/n2/r/n)由于:/r/n{/r/nb/r/n2/r/nk/r/n}/r/n是以/r/n為首項,公比為/r/n2/r/n的等比數列;/r/n所以/r/n,/r/n則/r/n=/r/n2/r/nn/r/n﹣/r/n3/r/n,/r/n所以/r/n=/r/n=/r/n(/r/nn/r/n≥/r/n1/r/n),/r/n則/r/n+/r/n…/r/n+/r/n,/r/n=/r/n./r/n1/r/n1/r/n.(2021/r/n?浙江麗水湖州衢州二模?/r/nT20/r/n./r/n)/r/n已/r/n知數列/r/n{/r/na/r/nn/r/n}/r/n是各項均為正數的等比數列,若/r/na/r/n1/r/n=/r/n2/r/n,/r/na/r/n2/r/n+/r/na/r/n3/r/n是/r/na/r/n3/r/n與/r/na/r/n4/r/n的等差中項.數列/r/n{/r/nb/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,且/r/nS/r/nn/r/n+/r/n=/r/n2/r/na/r/nn/r/n﹣/r/n2/r/n.求證:/r/n(Ⅰ)數列/r/n{/r/na/r/nn/r/n﹣/r/nb/r/nn/r/n}/r/n是等差數列;/r/n(Ⅱ)/r/n…/r/n+/r/n≤/r/n2/r/n(/r/n1/r/n﹣/r/n)./r/n證明:(Ⅰ)數列/r/n{/r/na/r/nn/r/n}/r/n是各項均為正數的等比數列,若/r/na/r/n1/r/n=/r/n2/r/n,/r/na/r/n2/r/n+/r/na/r/n3/r/n是/r/na/r/n3/r/n與/r/na

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論