江蘇省無錫江陰市2022年數(shù)學九年級上冊期末綜合測試試題含解析_第1頁
江蘇省無錫江陰市2022年數(shù)學九年級上冊期末綜合測試試題含解析_第2頁
江蘇省無錫江陰市2022年數(shù)學九年級上冊期末綜合測試試題含解析_第3頁
江蘇省無錫江陰市2022年數(shù)學九年級上冊期末綜合測試試題含解析_第4頁
江蘇省無錫江陰市2022年數(shù)學九年級上冊期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°2.下列說法正確的是()A.可能性很大的事情是必然發(fā)生的B.可能性很小的事情是不可能發(fā)生的C.“擲一次骰子,向上一面的點數(shù)是6”是不可能事件D.“任意畫一個三角形,其內(nèi)角和是”3.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°4.如圖,在中,,已知,把沿軸負方向向左平移到的位置,此時在同一雙曲線上,則的值為()A. B. C. D.5.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結i論:①abc>1;②b2﹣4ac>1;③2a+b=1;④a﹣b+c<1.其中正確的結論有()A.1個 B.2個 C.3個 D.4個6.如圖,在中,,,點、、分別在邊、、上,且與關于直線DE對稱.若,,則().A.3 B.5 C. D.7.在下列函數(shù)圖象上任取不同兩點P(x1,y1),Q(x2,y2),一定能使(x2﹣x1)(y2﹣y1)>0成立的是()A.y=﹣2x+1(x<0) B.y=﹣x2﹣2x+8(x<0)C.y=(x>0) D.y=2x2+x﹣6(x>0)8.在Rt△ABC中,∠C=90°,AB=5,BC=3,則tanA的值是()A. B. C. D.9.若關于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣110.已知反比例函數(shù)y=2x﹣1,下列結論中,不正確的是()A.點(﹣2,﹣1)在它的圖象上B.y隨x的增大而減小C.圖象在第一、三象限D.若x<0時,y隨x的增大而減小11.二次函數(shù)的圖像如圖所示,下面結論:①;②;③函數(shù)的最小值為;④當時,;⑤當時,(、分別是、對應的函數(shù)值).正確的個數(shù)為()A. B. C. D.12.如圖,矩形草坪ABCD中,AD=10m,AB=m.現(xiàn)需要修一條由兩個扇環(huán)構成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m2二、填空題(每題4分,共24分)13.如圖,等腰直角的頂點在正方形的對角線上,所在的直線交于點,交于點,連接,.下列結論中,正確的有_________(填序號).①;②是的一個三等分點;③;④;⑤.14.邊長為4cm的正三角形的外接圓半徑長是_____cm.15.如圖,是的外接圓,是的中點,連結,其中與交于點.寫出圖中所有與相似的三角形:________.16.如圖,中,,,將斜邊繞點逆時針旋轉至,連接,則的面積為_______.17.如圖所示的拋物線形拱橋中,當拱頂離水面2m時,水面寬4m.如果以拱頂為原點建立直角坐標系,且橫軸平行于水面,那么拱橋線的解析式為_____.18.古希臘時期,人們認為最美人體的肚臍至腳底的長度與身高長度之比是(0.618,稱之為黃金分割比例),著名的“斷臂維納斯”便是如此,若某位女性身高為165cm,肚臍到頭頂高度為65cm,則其應穿鞋跟為_____cm的高跟鞋才能使人體近似滿足黃金分割比例.(精確到1cm)三、解答題(共78分)19.(8分)如圖,是的平分線,點在上,以為直徑的交于點,過點作的垂線,垂足為點,交于點.(1)求證:直線是的切線;(2)若的半徑為,,求的長.20.(8分)如圖,的頂點是雙曲線與直線在第二象限的交點.軸于,且.(1)求反比例函數(shù)的解析式;(2)直線與雙曲線交點為、,記的面積為,的面積為,求21.(8分)計算:22.(10分)如圖,四邊形是平行四邊形,、是對角線上的兩個點,且.求證:.23.(10分)如圖,中,.以點為圓心,為半徑作恰好經(jīng)過點.是否為的切線?請證明你的結論.為割線,.當時,求的長.24.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).(1)請畫出將△ABC向下平移5個單位后得到的△A1B1C1;(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2,并直接寫出點B旋轉到點B2所經(jīng)過的路徑長.25.(12分)某商業(yè)銀行為提高存款額,經(jīng)過最近的兩次提高利息,使一年期存款的年利率由1.96%提高至2.25%,平均每次增加利息的百分率是多少?(結果寫成a%的形式,其中a保留小數(shù)點后兩位)26.如圖1,直線AB與x、y軸分別相交于點B、A,點C為x軸上一點,以AB、BC為邊作平行四邊形ABCD,連接BD,BD=BC,將△AOB沿x軸從左向右以每秒一個單位的速度運動,當點O和點C重合時運動停止,設△AOB與△BCD重合部分的面積為S,運動時間為t秒,S與t之間的函數(shù)如圖(2)所示(其中0<t≤2,2<t≤m,m<t<n時函數(shù)解析式不同).(1)點B的坐標為,點D的坐標為;(2)求S與t的函數(shù)解析式,并寫出t的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.【點睛】本題考查圓周角定理、切線的性質、三角形內(nèi)角和定理,解題的關鍵是求出∠AOP的度數(shù).2、D【分析】了解事件發(fā)生的可能性與必然事件、不可能事件、可能事件之間的關系.【詳解】解:A錯誤.可能性很大的事件并非必然發(fā)生,必然發(fā)生的事件的概率為1;B錯誤.可能性很小的事件指事件發(fā)生的概率很小,不可能事件的概率為0;C錯誤.擲一枚普通的正方體骰子,結果恰好點數(shù)“6”朝上的概率為.為可能事件.D正確.三角形內(nèi)角和是180°.故選:D.【點睛】本題考查事件發(fā)生的可能性,注意可能性較小的事件也有可能發(fā)生;可能性很大的事也有可能不發(fā)生.3、D【分析】利用圓的切線的性質定理、等腰三角形的性質即可得出.【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.【點睛】本題考查切線的性質定理,熟練掌握圓的切線的性質定理、等腰三角形的性質是解題的關鍵.4、C【分析】作CN⊥x軸于點N,根據(jù)證明,求得點C的坐標;設△ABC沿x軸的負方向平移c個單位,用c表示出和,根據(jù)兩點都在反比例函數(shù)圖象上,求出k的值,即可求出反比例函數(shù)的解析式.【詳解】作CN⊥軸于點N,

∵A(2,0)、B(0,1).

∴AO=2,OB=1,∵,∴,

在和中,∴,∴,

又∵點C在第一象限,

∴C(3,2);設△ABC沿軸的負方向平移c個單位,

則,則,

又點和在該比例函數(shù)圖象上,

把點和的坐標分別代入,得,

解得:,∴,

故選:C.【點睛】本題是反比例函數(shù)與幾何的綜合題,涉及的知識有:全等三角形的判定與性質,勾股定理,坐標與圖形性質,利用待定系數(shù)法求函數(shù)解析式,平移的性質.5、C【分析】首先根據(jù)開口方向確定a的取值范圍,根據(jù)對稱軸的位置確定b的取值范圍,根據(jù)拋物線與y軸的交點確定c的取值范圍,根據(jù)拋物線與x軸是否有交點確定b2﹣4ac的取值范圍,根據(jù)x=﹣1函數(shù)值可以判斷.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸的交點在軸的上方,,,故①錯誤;拋物線與軸有兩個交點,,故②正確;對稱軸,,,故③正確;根據(jù)圖象可知,當時,,故④正確;故選:.【點睛】此題主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求與的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用是解題關鍵.6、D【分析】過點F作FH⊥AD,垂足為點H,設,根據(jù)勾股定理求出AC,F(xiàn)H,AH,設,根據(jù)軸對稱的性質知,在Rt△BFE中運用勾股定理求出x,通過證明,求出DH的長,根據(jù)求出a的值,進而求解.【詳解】過點F作FH⊥AD,垂足為點H,設,由題意知,,,由勾股定理知,,,∵與關于直線DE對稱,∴,,設,則,在Rt△BFE中,,解得,,即,,∵,∴,,∴,∵,∴,∴,∴,∵,∴解得,,∴,故選D.【點睛】本題考查了軸對稱圖形的性質,相似三角形的判定與性質,勾股定理,等腰直角三角形的性質等,巧作輔助線證明是解題的關鍵.7、D【分析】據(jù)各函數(shù)的增減性依次進行判斷即可.【詳解】解:A、∵k=﹣2<0∴y隨x的增大而減小,即當x1>x2時,必有y1<y2∴當x<0時,(x2﹣x1)(y2﹣y1)<0,故A選項不符合;B、∵a=﹣1<0,對稱軸為直線x=﹣1,∴當﹣1<x<0時,y隨x的增大而減小,當x<﹣1時y隨x的增大而增大,∴當x<﹣1時:能使(x2﹣x1)(y2﹣y1)>0成立,故B選項不符合;C、∵>0,∴當x>0時,y隨x的增大而減小,∴當x>0時,(x2﹣x1)(y2﹣y1)<0,故C選項不符合;D、∵a=2>0,對稱軸為直線x=﹣,∴當x>﹣時y隨x的增大而增大,∴當x>0時,(x2﹣x1)(y2﹣y1)>0,故D選項符合;故選:D.【點睛】本題考查的知識點是一次函數(shù)、反比例函數(shù)圖象的性質以及二次函數(shù)圖象的性質,掌握二次函數(shù)及反比例函數(shù)的圖象性質是解此題的關鍵.8、A【解析】由勾股定理,得AC=,由正切函數(shù)的定義,得tanA=,故選A.9、C【解析】試題解析:關于的一元二次方程沒有實數(shù)根,,解得:故選C.10、B【分析】由反比例函數(shù)的關系式,可以判斷出(-2,-1)在函數(shù)的圖象上,圖象位于一、三象限,在每個象限內(nèi)y隨x的增大而減小,進而作出判斷,得到答案.【詳解】A、把(﹣2,﹣1)代入y=2x﹣1得:左邊=右邊,故本選項正確,不符合題意;B、k=2>0,在每個象限內(nèi),y隨x的增大而減小,故本選項錯誤,符合題意;C、k=2>0,圖象在第一、三象限,故本選項正確,不符合題意;D、若x<0時,圖象在第三象限內(nèi),y隨x的增大而減小,故本選項正確,不符合題意;不正確的只有選項B,故選:B.【點睛】考查反比例函數(shù)的圖象和性質,特別注意反比例函數(shù)的增減性,當k>0,在每個象限內(nèi),y隨x的增大而減小;當k<0,在每個象限內(nèi),y隨x的增大而增大.11、C【分析】由拋物線開口方向可得到a>0;由拋物線過原點得c=0;根據(jù)頂點坐標可得到函數(shù)的最小值為-3;根據(jù)當x<0時,拋物線都在x軸上方,可得y>0;由圖示知:0<x<2,y隨x的增大而減?。弧驹斀狻拷猓孩儆珊瘮?shù)圖象開口向上可知,,故此選項正確;②由函數(shù)的圖像與軸的交點在可知,,故此選項正確;③由函數(shù)的圖像的頂點在可知,函數(shù)的最小值為,故此選項正確;④因為函數(shù)的對稱軸為,與軸的一個交點為,則與軸的另一個交點為,所以當時,,故此選項正確;⑤由圖像可知,當時,隨著的值增大而減小,所以當時,,故此選項錯誤;其中正確信息的有①②③④.故選:C.【點睛】本題考查了二次函數(shù)的圖象與系數(shù)的關系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;對稱軸為直線x=,;拋物線與y軸的交點坐標為(0,c);當b2-4ac>0,拋物線與x軸有兩個交點;當b2-4ac=0,拋物線與x軸有一個交點;當b2-4ac<0,拋物線與x軸沒有交點.12、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內(nèi)容比較多,有勾股定理、三角函數(shù)、扇形面積,做題的關鍵是把實際問題轉化為數(shù)學問題.二、填空題(每題4分,共24分)13、①②④【分析】根據(jù)△CBE≌△CDF即可判斷①;由△CBE≌△CDF得出∠EBC=∠FDC=45°進而得出△DEF為直角三角形結合即可判斷②;判斷△BEN是否相似于△BCE即可判斷③;根據(jù)△BNE∽△DME即可判斷④;作EH⊥BC于點H得出△EHC∽△FDE結合tan∠HEC=tan∠DFE=2,設出線段比即可判斷⑤.【詳解】∵△CEF為等腰直角三角形∴CE=CF,∠ECF=90°又ABCD為正方形∴∠BCD=90°,BC=DC又∠BCD=∠BCE+∠ECD∠ECF=∠ECD+∠DCF∴∠DCF=∠BCE∴△CBE≌△CDF(SAS)∴BE=DF,故①正確;∴∠EBC=∠FDC=45°故∠EDF=∠EDC+∠FDC=90°又∴E是BD的一個三等分點,故②正確;∵∴即判定△BEN∽△BCE∵△ECF為等腰直角三角形,BD為正方形對角線∴∠CFE=45°=∠EDC∴∠CFE+∠MCF=∠EDC+∠DEM∴∠MCF=∠DEM然而題目并沒有告訴M是EF的中點∴∠ECM≠∠MCF∴∠ECM≠∠DEM≠∠BNE∴不能判定△BEN∽△BCE∴不能得出進而不能得出,故③錯誤;由題意可知△BNE∽△DME又BE=2DE∴BN=2DM,故④正確;作EH⊥BC于點H∵∠MCF=∠DEM又∠HCE=∠DCF∴∠HCE=∠DEM又∠EHC=∠FDE=90°∴△EHC∽△FDE∴tan∠HEC=tan∠DFE=2可設EH=x,則CH=2xEC=∴sin∠BCE=,故⑤錯誤;故答案為①②④.【點睛】本題考查的是正方形綜合,難度系數(shù)較大,涉及到了相似三角形的判定與性質,勾股定理、等腰直角三角形的性質以及方程的思想等,需要熟練掌握相關基礎知識.14、.【分析】經(jīng)過圓心O作圓的內(nèi)接正n邊形的一邊AB的垂線OC,垂足是C.連接OA,則在直角△OAC中,∠O=.OC是邊心距r,OA即半徑R.AB=2AC=a.根據(jù)三角函數(shù)即可求解.【詳解】解:連接中心和頂點,作出邊心距.那么得到直角三角形在中心的度數(shù)為:360°÷3÷2=60°,那么外接圓半徑是4÷2÷sin60°=;故答案為:.【點睛】本題考查了等邊三角形、垂徑定理以及三角函數(shù)的知識,解答的關鍵在于做出輔助線、靈活應用勾股定理.15、;.【分析】由同弧所對的圓周角相等可得,可利用含對頂角的8字相似模型得到,由等弧所對的圓周角相等可得,在和含公共角,出現(xiàn)母子型相似模型.【詳解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中點,∴,∴∠EAD=∠ABD,∠ADB公共,∴.綜上:;.故答案為:;.【點睛】本題考查的知識點是相似三角形的判定和性質,圓周角定理,同弧或等弧所對的圓周角相等的應用是解題的關鍵.16、8【分析】過點B'作B'E⊥AC于點E,由題意可證△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面積.【詳解】解:如圖:過點B'作B'E⊥AC于點E∵旋轉∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案為:.【點睛】本題考查了旋轉的性質,全等三角形的判定和性質,利用旋轉的性質解決問題是本題的關鍵.17、y=x1【解析】根據(jù)題意以拱頂為原點建立直角坐標系,即可求出解析式.【詳解】如圖:以拱頂為原點建立直角坐標系,由題意得A(1,?1),C(0,?1),設拋物線的解析式為:y=ax1把A(1,?1)代入,得4a=?1,解得a=?,所以拋物線解析式為y=?x1.故答案為:y=?x1.【點睛】本題考查了二次函數(shù)的應用,解決本題的關鍵是根據(jù)題意建立平面直角坐標系.18、1【分析】根據(jù)黃金分割的概念,列出方程直接求解即可.【詳解】設她應選擇高跟鞋的高度是xcm,

則≈0.618,

解得:x≈1,且符合題意.

故答案為1.【點睛】此題考查黃金分割的應用,解題關鍵是明確黃金分割所涉及的線段的比.三、解答題(共78分)19、(1)證明見解析;(2)1.【分析】(1)根據(jù)角平分線的定義和同圓的半徑相等可得,證明,可得結論;(2)在中,設,則,,證明,表示,由平行線分線段成比例定理得:,代入可得結論.【詳解】解:(1)連接.∵AG是∠PAQ的平分線,∵半徑∴直線BC是的切線.(2)連接DE.∵為的直徑,∵,設在中,在與中∵,∴在Rt中,AE=12,∴,即∴∴在Rt△ODB與Rt△ACB中∵,∴,∴,即【點睛】本題考查了三角形與圓相交的問題,掌握角平分線的定義、勾股定理、相似三角形的判定以及平行線分線段成比例是解題的關鍵.20、(1);(2)【分析】(1)由可得,再根據(jù)函數(shù)圖像可得,即可得到函數(shù)解析式.(2)先求得一次函數(shù)解析式,再聯(lián)立方程組求得點A和點C的坐標,記直線與軸的交點為,求得點坐標為,,即可求得.【詳解】解:(1)∵,∴雙曲線在二、四象限反比例函數(shù)的解析式為(2)由(1)可得,代入可得一次函數(shù)的解析式為,聯(lián)立方程組,得,易求得點為,點為記直線與軸的交點為,在中,當y=0,則x=2,∴點坐標為,,.【點睛】此題首先利用待定系數(shù)法確定函數(shù)解析式,然后利用解方程組來確定圖象的交點坐標,及利用坐標求出線段和圖形的面積.21、(1);(2).【分析】(1)根據(jù)二次根式混合運算法則計算即可;(2)根據(jù)有理數(shù)的乘方、零指數(shù)冪、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪、二次根式的化簡計算即可.【詳解】(1)原式;(2)原式.【點睛】本題考查了二次根式的混合運算、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪以及零指數(shù)冪,熟練掌握運算法則是解答本題的關鍵.22、見解析【分析】先根據(jù)平行四邊形的性質得,,則,再證明得到AE=CF.【詳解】證明:∵四邊形為平行四邊形∴,∴∵∴∴【點睛】本題考查了平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分.23、(1)是的切線,理由詳見解析;(2)【分析】(1)根據(jù)題意連接,利用平行四邊形的判定與性質進行分析證明即可;(2)由題意作于,連接,根據(jù)平行四邊形的性質以及勾股定理進行分析求解.【詳解】解:是的切線.理由如下.連接,如下圖,是平行四邊形,是的切線作于,連接,如上圖,由,是平行四邊形【點睛】本題考查平行四邊形和圓相關,熟練掌握平行四邊形的判定與性質以及圓的相關性質是解題的關鍵.24、(1)圖見解析;(2)圖見解析;路徑長π.【分析】(1)利用點平移的坐標特征寫出A1、B1、C1的坐標,然后描點即可得到△A1B1C1為所作;(2)利用網(wǎng)格特定和旋轉的性質畫出A、B、C的對應點A2、B2、C2,從而得到△A2B2C2,然后計算出OB的長后利用弧長公式計算點B旋轉到點B2所經(jīng)過的路徑長.【詳解】解:(1)如圖,△A1B1C1為所作;(2)如圖,△A2B2C2為所作,OB==2點B旋轉到點B2所經(jīng)過的路徑長==π.【點睛】本題考查了作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.25、平均每次增加利息的百分率約為7.14%【分析】設平均每增加利息的百分率為x,則兩次增加利息后,利率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論