2023屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學高三適應性調研考試數(shù)學試題(含解析)_第1頁
2023屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學高三適應性調研考試數(shù)學試題(含解析)_第2頁
2023屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學高三適應性調研考試數(shù)學試題(含解析)_第3頁
2023屆福建省泉州市泉港區(qū)泉州市泉港區(qū)第一中學高三適應性調研考試數(shù)學試題(含解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數(shù)學模擬測試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),其圖象關于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的,縱坐標保持不變2.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.123.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.4.某校在高一年級進行了數(shù)學競賽(總分100分),下表為高一·一班40名同學的數(shù)學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數(shù)學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.125.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.46.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結論正確的是()A. B. C. D.7.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.8.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=09.若復數(shù)()在復平面內的對應點在直線上,則等于()A. B. C. D.10.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、11.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.12.若復數(shù)()是純虛數(shù),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.14.學校藝術節(jié)對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學中有且只有兩位說的話是對的,則獲得一等獎的作品是______.15.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.16.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.19.(12分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護人員和醫(yī)療、生活物資嚴重缺乏,全國各地紛紛馳援.截至1月30日12時,湖北省累計接收捐贈物資615.43萬件,包括醫(yī)用防護服2.6萬套N95口軍47.9萬個,醫(yī)用一次性口罩172.87萬個,護目鏡3.93萬個等.中某運輸隊接到給武漢運送物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運輸隊所花的成本最低?20.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.21.(12分)已知函數(shù),將的圖象向左移個單位,得到函數(shù)的圖象.(1)若,求的單調區(qū)間;(2)若,的一條對稱軸是,求在的值域.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】

由函數(shù)的圖象關于直線對稱,得,進而得再利用圖像變換求解即可【題目詳解】由函數(shù)的圖象關于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標縮短為原來的,縱坐標保持不變,得”即可.故選:D【答案點睛】本題考查三角函數(shù)的圖象與性質,考查圖像變換,考查運算求解能力,是中檔題2、D【答案解析】

中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【題目詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【答案點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.3、B【答案解析】

利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調性求得再根據(jù)此范圍求的最小值.【題目詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【答案點睛】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質等基礎知識,考查數(shù)學運算求解能力和分類討論思想,是中等題.4、D【答案解析】

根據(jù)程序框圖判斷出的意義,由此求得的值,進而求得的值.【題目詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【答案點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎知識;考查運算求解能力,邏輯推理能力和數(shù)學應用意識.5、B【答案解析】

根據(jù)函數(shù)的奇偶性和單調性得到可行域,畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【題目詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當直線過點,即時,有最小值為.故選:.【答案點睛】本題考查了函數(shù)的單調性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.6、A【答案解析】

根據(jù)題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【題目詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【答案點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.7、C【答案解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.8、A【答案解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.9、C【答案解析】

由題意得,可求得,再根據(jù)共軛復數(shù)的定義可得選項.【題目詳解】由題意得,解得,所以,所以,故選:C.【答案點睛】本題考查復數(shù)的幾何表示和共軛復數(shù)的定義,屬于基礎題.10、A【答案解析】

設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調遞增,得到,進而變形即可求解.【題目詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調遞增,則,即,變形可得.故選:A.【答案點睛】本題主要考查了利用導數(shù)研究函數(shù)的單調性及其應用,以及利用單調性比較大小,其中解答中根據(jù)題意合理構造新函數(shù),利用新函數(shù)的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.11、B【答案解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【題目詳解】解:因為,所以因為所以,即,,時故選:【答案點睛】本題考查正弦定理的應用,余弦函數(shù)的性質的應用,屬于中檔題.12、B【答案解析】

化簡復數(shù),由它是純虛數(shù),求得,從而確定對應的點的坐標.【題目詳解】是純虛數(shù),則,,,對應點為,在第二象限.故選:B.【答案點睛】本題考查復數(shù)的除法運算,考查復數(shù)的概念與幾何意義.本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【答案解析】

把向量進行轉化,用表示,利用基本不等式可求實數(shù)的值.【題目詳解】,解得=1.故答案為:1.【答案點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側重考查數(shù)學運算的核心素養(yǎng).14、B【答案解析】

首先根據(jù)“學校藝術節(jié)對四件參賽作品只評一件一等獎”,故假設分別為一等獎,然后判斷甲、乙、丙、丁四位同學的說法的正確性,即可得出結果.【題目詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【答案點睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設為一等獎并通過是否滿足題目條件來判斷其是否正確.15、【答案解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【題目詳解】設圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【答案點睛】本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.16、1【答案解析】

利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個對稱中心與一個對稱軸的距離為,進而求解即可.【題目詳解】由題,,因為,,且的最小值等于,即相鄰的一個對稱中心與一個對稱軸的距離為,所以,即,所以,故答案為:1【答案點睛】本題考查正弦型函數(shù)的對稱性的應用,考查三角函數(shù)的化簡.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上增;在上減;(2)(i);(ii)2【答案解析】

(1)求導求出,對分類討論,求出的解,即可得出結論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉化為,恒成立,設,,只需,根據(jù)的單調性,即可求解.【題目詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調遞減,所以所以在上單調遞減,,綜上可知,整數(shù)的最大值為.【答案點睛】本題考查函數(shù)導數(shù)的綜合應用,涉及函數(shù)的單調性、導數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.18、(1)(2)與交點的極坐標為,和【答案解析】

(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯(lián)立曲線和曲線的方程解得即可.【題目詳解】(1)曲線的直角坐標方程為:,即.的參數(shù)方程化為極坐標方程為;(2)聯(lián)立可得:,與交點的極坐標為,和.【答案點睛】本題考查了參數(shù)方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯(lián)立,屬于基礎題.19、每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低【答案解析】

設每天派出A型卡車輛,則派出B型卡車輛,由題意列出約束條件,作出可行域,求出使目標函數(shù)取最小值的整數(shù)解,即可得解.【題目詳解】設每天派出A型卡車輛,則派出B型卡車輛,運輸隊所花成本為元,由題意可知,,整理得,目標函數(shù),如圖所示,為不等式組表示的可行域,由圖可知,當直線經(jīng)過點時,最小,解方程組,解得,,然而,故點不是最優(yōu)解.因此在可行域的整點中,點使得取最小值,即,故每天派出A型卡車輛,派出B型卡車輛,運輸隊所花成本最低.【答案點睛】本題考查了線性規(guī)劃問題中的最優(yōu)整數(shù)解問題,考查了數(shù)形結合的思想,解題關鍵在于列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù),同時注意整點的選取,屬于中檔題.20、(1)(2)是定值,詳見解析【答案解析】

(1)根據(jù)長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【題目詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【答案點睛】本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論