版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB2.1cm2的電子屏上約有細菌135000個,135000用科學記數法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1033.關于x的不等式組的所有整數解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,24.如圖,已知是的角平分線,是的垂直平分線,,,則的長為()A.6 B.5 C.4 D.5.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:①4a+2b<0;②﹣1≤a≤;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n﹣1有兩個不相等的實數根.其中結論正確的個數為()A.1個 B.2個 C.3個 D.4個6.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮(zhèn)新增就業(yè)1351萬人,數據“1351萬”用科學記數法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1087.在,,則的值為()A. B. C. D.8.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.9.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數是()A.75° B.60° C.45° D.30°10.下列所給函數中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+111.四組數中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數的是()A.①② B.①③ C.①④ D.①③④12.函數(為常數)的圖像上有三點,,,則函數值的大小關系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.14.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.15.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=6,AB=10,OD⊥BC于點D,則OD的長為______.16.某次數學測試,某班一個學習小組的六位同學的成績如下:84、75、75、92、86、99,則這六位同學成績的中位數是_____.17.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.18.如圖,菱形的邊,,是上一點,,是邊上一動點,將梯形沿直線折疊,的對應點為,當的長度最小時,的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.20.(6分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.21.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.22.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.23.(8分)下面是一位同學的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點O為端點畫射線,.(2)在上依次截取,.(3)在上截取.(4)聯結,過點B作,交于點D.所以:線段________就是所求的線段x.①試將結論補完整②這位同學作圖的依據是________③如果,,,試用向量表示向量.24.(10分)鐵嶺市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數關系,其圖象如圖所示:求y與x之間的函數關系式;商貿公司要想獲利2090元,則這種干果每千克應降價多少元?該干果每千克降價多少元時,商貿公司獲利最大?最大利潤是多少元?25.(10分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?26.(12分)現有四張分別標有數字1、2、2、3的卡片,他們除數字外完全相同.把卡片背面朝上洗勻,從中隨機抽出一張后放回,再背朝上洗勻,從中隨機抽出一張,則兩次抽出的卡片所標數字不同的概率()A. B. C. D.27.(12分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:調查了________名學生;補全條形統計圖;在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.2、B【解析】
根據科學記數法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同;當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數).【詳解】解:135000用科學記數法表示為:1.35×1.故選B.【點睛】科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、B【解析】
分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.4、D【解析】
根據ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【點睛】本題考查了線段垂直平分線的性質,三角形內角和定理,含30度角的直角三角形的性質,余弦等,結合圖形熟練應用相關的性質及定理是解題的關鍵.5、C【解析】
①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結論①錯誤;
②利用一次函數圖象上點的坐標特征結合b=-2a可得出a=-,再結合拋物線與y軸交點的位置即可得出-1≤a≤-,結論②正確;
③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數m,a+b≥am2+bm總成立,結論③正確;
④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結論①錯誤;
②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),
∴2≤c≤3,
∴-1≤a≤-,結論②正確;
③∵a<0,頂點坐標為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對于任意實數m,a+b≥am2+bm總成立,結論③正確;
④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個交點,
又∵a<0,
∴拋物線開口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,
∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.
故選C.【點睛】本題考查了二次函數圖象與系數的關系、拋物線與x軸的交點以及二次函數的性質,觀察函數圖象,逐一分析四個結論的正誤是解題的關鍵.6、B【解析】
根據科學記數法進行解答.【詳解】1315萬即13510000,用科學記數法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數法,科學記數法表示數的標準形式是a×10n(1≤│a│<10且n為整數).7、A【解析】
本題可以利用銳角三角函數的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【點睛】本題考查了正切函數的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.8、D【解析】
根據從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關鍵.9、C【解析】
根據直角三角形兩銳角互余即可解決問題.【詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數=90°﹣45°=45°,故選C.【點睛】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.10、A【解析】
根據二次函數的性質、一次函數的性質及反比例函數的性質判斷出函數符合y隨x的增大而減小的選項.【詳解】解:A.此函數為一次函數,y隨x的增大而減小,正確;B.此函數為二次函數,當x<0時,y隨x的增大而減小,錯誤;C.此函數為反比例函數,在每個象限,y隨x的增大而減小,錯誤;D.此函數為一次函數,y隨x的增大而增大,錯誤.故選A.【點睛】本題考查了二次函數、一次函數、反比例函數的性質,掌握函數的增減性是解決問題的關鍵.11、C【解析】
根據倒數的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數的是:①④,故選C.【點睛】此題主要考查了倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.12、A【解析】試題解析:∵函數y=(a為常數)中,-a1-1<0,∴函數圖象的兩個分支分別在二、四象限,在每一象限內y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3﹣【解析】
首先設點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【詳解】設點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標求解,關鍵是利用平行的性質.14、【解析】
根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.15、1【解析】
根據垂徑定理求得BD,然后根據勾股定理求得即可.【詳解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==1.故答案為1.【點睛】本題考查垂徑定理及其勾股定理,熟記定理并靈活應用是本題的解題關鍵.16、85【解析】
根據中位數求法,將學生成績從小到大排列,取中間兩數的平均數即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數為中間兩數84和86的平均數,∴這六位同學成績的中位數是85.【點睛】本題考查了中位數的求法,屬于簡單題,熟悉中位數的概念是解題關鍵.17、20【解析】
先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.
設這個圓錐形紙帽的底面半徑為r.
根據題意,得40π=2πr,
解得r=20cm.故答案是:20.【點睛】解答本題的關鍵是有確定底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.18、【解析】如圖所示,過點作,交于點.在菱形中,∵,且,所以為等邊三角形,.根據“等腰三角形三線合一”可得,因為,所以.在中,根據勾股定理可得,.因為梯形沿直線折疊,點的對應點為,根據翻折的性質可得,點在以點為圓心,為半徑的弧上,則點在上時,的長度最小,此時,因為.所以,所以,所以.點睛:A′為四邊形ADQP沿PQ翻折得到,由題目中可知AP長為定值,即A′點在以P為圓心、AP為半徑的圓上,當C、A′、P在同一條直線時CA′取最值,由此結合直角三角形勾股定理、等邊三角形性質求得此時CQ的長度即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【解析】
分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,20、(1)證明見解析;(1)證明見解析;(3)1.【解析】
(1)連接OB、OC、OD,根據圓心角與圓周角的性質得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據圓周角相等所對的弧相等得出結論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據平行線的性質得出對應邊成比例,進而得出結論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據鄰補角與余角的性質可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據直角三角形的三角函數計算出邊的長,根據“角角邊”證明出△HBO∽△ABC,根據相似三角形的性質得出對應邊成比例,進而得出結論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點O作OM⊥AD于點M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點E,CF⊥AD于點F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長EO交AB于點H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【點睛】本題考查了相似三角形的判定與性質和圓的相關知識點,解題的關鍵是熟練的掌握相似三角形的判定與性質和圓的相關知識點.21、(1)證明見解析(2)【解析】
(1)連結OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據平行線的性質得OD⊥CE,然后根據切線的判定定理得到結論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【詳解】(1)證明:連結OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.22、見解析【解析】
根據CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應邊相等即可.【詳解】解:∵CE∥DF
∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,
∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質和平行線的性質;熟練掌握平行線的性質,證明三角形全等是解決問題的關鍵.23、①CD;②平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③.【解析】
①根據作圖依據平行線分線段成比例定理求解可得;②根據“平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例”可得;③先證得,即,從而知.【詳解】①∵,∴OA:AB=OC:CD,∵,,,,∴線段就是所求的線段x,故答案為:②這位同學作圖的依據是:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;故答案為:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應線段成比例;③∵、,且,∴,∴,即,∴,∴.【點睛】本題主要考查作圖﹣復雜作圖,解題的關鍵是熟練掌握平行線分線段成比例定理、相似三角形的判定及向量的計算.24、(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數法即可得到函數的解析式;(2)根據銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據銷售量×每千克利潤=總利潤列出函數解析式求解即可.【詳解】(1)設y與x之間的函數關系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y與x之間的函數關系式為:y=10x+100;(2)根據題意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵為了讓顧客得到更大的實惠,∴x=9,答:這種干果每千克應降價9元;(3)該干果每千克降價x元,商貿公司獲得利潤是w元,根據題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴當x=5時,故該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【點睛】本題考查的是二次函數的應用,此類題目主要考查學生分析、解決實際問題能力,又能較好地考查學生“用數學”的意識.25、(1)該網店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解析】
(1)設該網店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據“甲種羽毛球每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版綠色環(huán)保項目英文借款協議3篇
- 二零二五年工程量清單編制合同2篇
- 2025版智能機器人研發(fā)與技術服務協議范本2篇
- 2024版智能家居系統研發(fā)與市場推廣合同
- 二零二五年度MCN藝人虛擬偶像經紀合同2篇
- 2025年建設工程安全生產監(jiān)督合同范本
- 2024年綠色能源項目可行性研究咨詢服務合同3篇
- 2025版石材供應與加工全面合作協議3篇
- 2024版衛(wèi)浴合同范本
- 2024年股東新增股本合同
- 娛樂場所突發(fā)事件應急措施及疏散預案(三篇)
- 八大危險作業(yè)安全培訓考核試卷
- 2024年黑龍江農業(yè)工程職業(yè)學院單招職業(yè)適應性測試題庫
- 企業(yè)法律顧問詳細流程
- 中國商貿文化商道
- 臨港新片區(qū)規(guī)劃介紹
- 云數據中心建設項目可行性研究報告
- 《新生兒視網膜動靜脈管徑比的形態(tài)學分析及相關性研究》
- 無重大疾病隱瞞保證書
- 廢氣處理系統改造及廢水處理系統改造項目可行性研究報告
- 2024年春概率論與數理統計學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論