




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ChapterFiveChoiceChapterFiveChoice1EconomicRationalityTheprincipalbehavioralpostulateisthatadecisionmakerchoosesitsmostpreferredalternativefromthoseavailabletoit.Theavailablechoicesconstitutethechoiceset.Howisthemostpreferredbundleinthechoicesetlocated?EconomicRationalityTheprinci2RationalConstrainedChoicex1x2RationalConstrainedChoicex1x3RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex14RationalConstrainedChoiceUtilityx2x1RationalConstrainedChoiceUt5RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex1x6RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti7RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti8RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti9RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti10RationalConstrainedChoiceUtilityx1x2Affordable,butnotthemostpreferredaffordablebundle.RationalConstrainedChoiceUti11RationalConstrainedChoicex1x2UtilityAffordable,butnotthemostpreferredaffordablebundle.Themostpreferred
oftheaffordablebundles.RationalConstrainedChoicex1x12RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex1x13RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti14RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti15RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti16RationalConstrainedChoicex1x2RationalConstrainedChoicex1x17RationalConstrainedChoicex1x2Affordable
bundlesRationalConstrainedChoicex1x18RationalConstrainedChoicex1x2Affordable
bundlesRationalConstrainedChoicex1x19RationalConstrainedChoicex1x2Affordable
bundlesMorepreferred
bundlesRationalConstrainedChoicex1x20RationalConstrainedChoiceAffordable
bundlesx1x2Morepreferred
bundlesRationalConstrainedChoiceAff21RationalConstrainedChoicex1x2x1*x2*RationalConstrainedChoicex1x22RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isthemost
preferredaffordable
bundle.RationalConstrainedChoicex1x23RationalConstrainedChoiceThemostpreferredaffordablebundleiscalledtheconsumer’sORDINARYDEMANDatthegivenpricesandbudget.Ordinarydemandswillbedenotedby
x1*(p1,p2,m)andx2*(p1,p2,m).RationalConstrainedChoiceThe24RationalConstrainedChoiceWhenx1*>0andx2*>0thedemandedbundleisINTERIOR.Ifbuying(x1*,x2*)costs$mthenthebudgetisexhausted.RationalConstrainedChoiceWhe25RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.(x1*,x2*)exhauststhe
budget.RationalConstrainedChoicex1x26RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.
(a)(x1*,x2*)exhauststhe
budget;p1x1*+p2x2*=m.RationalConstrainedChoicex1x27RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.
(b)Theslopeoftheindiff.
curveat(x1*,x2*)equals
theslopeofthebudget
constraint.RationalConstrainedChoicex1x28RationalConstrainedChoice(x1*,x2*)satisfiestwoconditions:(a)thebudgetisexhausted;
p1x1*+p2x2*=m(b)theslopeofthebudgetconstraint,-p1/p2,andtheslopeoftheindifferencecurvecontaining(x1*,x2*)areequalat(x1*,x2*).RationalConstrainedChoice(x129ComputingOrdinaryDemandsHowcanthisinformationbeusedtolocate(x1*,x2*)forgivenp1,p2andm?ComputingOrdinaryDemandsHow30ComputingOrdinaryDemands-aCobb-DouglasExample.SupposethattheconsumerhasCobb-Douglaspreferences.ComputingOrdinaryDemands-a31ComputingOrdinaryDemands-aCobb-DouglasExample.SupposethattheconsumerhasCobb-Douglaspreferences.
ThenComputingOrdinaryDemands-a32ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSisComputingOrdinaryDemands-a33ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSis
At(x1*,x2*),MRS=-p1/p2soComputingOrdinaryDemands-a34ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSis
At(x1*,x2*),MRS=-p1/p2so(A)ComputingOrdinaryDemands-a35ComputingOrdinaryDemands-aCobb-DouglasExample.(x1*,x2*)alsoexhauststhebudgetso(B)ComputingOrdinaryDemands-a36ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)ComputingOrdinaryDemands-a37ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)SubstituteComputingOrdinaryDemands-a38ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)SubstituteandgetThissimplifiesto….ComputingOrdinaryDemands-a39ComputingOrdinaryDemands-aCobb-DouglasExample.ComputingOrdinaryDemands-a40ComputingOrdinaryDemands-aCobb-DouglasExample.Substitutingforx1*inthengivesComputingOrdinaryDemands-a41ComputingOrdinaryDemands-aCobb-DouglasExample.Sowehavediscoveredthatthemost
preferredaffordablebundleforaconsumer
withCobb-Douglaspreferences
isComputingOrdinaryDemands-a42ComputingOrdinaryDemands-aCobb-DouglasExample.x1x2ComputingOrdinaryDemands-a43RationalConstrainedChoiceWhenx1*>0andx2*>0
and(x1*,x2*)exhauststhebudget,
andindifferencecurveshaveno
‘kinks’,theordinarydemandsareobtainedbysolving:(a)p1x1*+p2x2*=y(b)theslopesofthebudgetconstraint,-p1/p2,andoftheindifferencecurvecontaining(x1*,x2*)areequalat(x1*,x2*).RationalConstrainedChoiceWhe44RationalConstrainedChoiceButwhatifx1*=0?Orifx2*=0?Ifeitherx1*=0orx2*=0thentheordinarydemand(x1*,x2*)isatacornersolutiontotheproblemofmaximizingutilitysubjecttoabudgetconstraint.RationalConstrainedChoiceBut45ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1ExamplesofCornerSolutions-46ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-47ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-48ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-49ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1<p2.ExamplesofCornerSolutions-50ExamplesofCornerSolutions--thePerfectSubstitutesCaseSowhenU(x1,x2)=x1+x2,themost
preferredaffordablebundleis(x1*,x2*)
whereandifp1<p2ifp1>p2.ExamplesofCornerSolutions-51ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1=p2.ExamplesofCornerSolutions-52ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2Allthebundlesinthe
constraintareequallythe
mostpreferredaffordable
whenp1=p2.ExamplesofCornerSolutions-53ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2BetterExamplesofCornerSolutions-54ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2ExamplesofCornerSolutions-55ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Whichisthemostpreferred
affordablebundle?ExamplesofCornerSolutions-56ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Themostpreferred
affordablebundleExamplesofCornerSolutions-57ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Themostpreferred
affordablebundleNoticethatthe“tangencysolution”
isnotthemostpreferredaffordable
bundle.ExamplesofCornerSolutions-58Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions59Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=0U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions60Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=-¥MRS=0U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions61Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=-¥MRS=0MRSisundefinedU(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions62Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions63Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Whichisthemost
preferredaffordablebundle?Examplesof‘Kinky’Solutions64Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1ThemostpreferredaffordablebundleExamplesof‘Kinky’Solutions65Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*Examplesof‘Kinky’Solutions66Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*(a)p1x1*+p2x2*=mExamplesof‘Kinky’Solutions67Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*(a)p1x1*+p2x2*=m
(b)x2*=ax1*Examplesof‘Kinky’Solutions68Examplesof‘Kinky’Solutions--thePerfectComplementsCase(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Examplesof‘Kinky’Solutions69Examplesof‘Kinky’Solutions--thePerfectComplementsCase(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitutionfrom(b)forx2*in(a)givesp1x1*+p2ax1*=mExamplesof‘Kinky’Solutions70Examplesof‘Kinky’Solutions--thePerfectComplementsCase(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitutionfrom(b)forx2*in(a)givesp1x1*+p2ax1*=m
whichgivesExamplesof‘Kinky’Solutions71Examplesof‘Kinky’Solutions--thePerfectComplementsCase(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitutionfrom(b)forx2*in(a)givesp1x1*+p2ax1*=m
whichgivesExamplesof‘Kinky’Solutions72Examplesof‘Kinky’Solutions--thePerfectComplementsCase(a)p1x1*+p2x2*=m;(b)x2*=ax1*.Substitutionfrom(b)forx2*in(a)givesp1x1*+p2ax1*=m
whichgivesAbundleof1commodity1unitand
acommodity2unitscostsp1+ap2;
m/(p1+ap2)suchbundlesareaffordable.Examplesof‘Kinky’Solutions73Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions74ChoosingTaxes:VariousTaxesQuantitytax:onx:(p+t)xValuetax:onpx:(1+t)pxAlsocalledadvaloremtaxLumpsumtax:TIncometax:CanbeproportionalorlumpsumChoosingTaxes:VariousTaxesQ75IncomeTaxvs.QuantityTaxOriginalbudget:p1x1+p2x2=mAfterquantitytax:(p1+t)x1+p2x2=mAtoptimalchoice(x1*,x2*)(p1+t)x1*+p2x2*=m(5.2)Taxrevenue:R*=tx1*Withanincometax,budgetis:p1x1+p2x2=m-tx1*IncomeTaxvs.QuantityTaxOri76Incomevs.QuantityTaxProposition:(x1*,x2*)isaffordableunderincometaxEquivalentto:provethat(x1*,x2*)satisfiesbudgetconstraintunderincometax.Or,budgetconstraintholdsatpoint(x1*,x2*).p1x1*+p2x2*=m-tx1*Whichistrueaccordingto(5.2).Itisnotanoptimalchoicebecausepricesaredifferent.Conclusion:Theoptimalchoicemustbemorepreferredto(x1*,x2*)Incomevs.QuantityTaxProposi77Ch05-《中級(jí)微觀經(jīng)濟(jì)學(xué)》范里安-英文版課件78ChapterFiveChoiceChapterFiveChoice79EconomicRationalityTheprincipalbehavioralpostulateisthatadecisionmakerchoosesitsmostpreferredalternativefromthoseavailabletoit.Theavailablechoicesconstitutethechoiceset.Howisthemostpreferredbundleinthechoicesetlocated?EconomicRationalityTheprinci80RationalConstrainedChoicex1x2RationalConstrainedChoicex1x81RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex182RationalConstrainedChoiceUtilityx2x1RationalConstrainedChoiceUt83RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex1x84RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti85RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti86RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti87RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti88RationalConstrainedChoiceUtilityx1x2Affordable,butnotthemostpreferredaffordablebundle.RationalConstrainedChoiceUti89RationalConstrainedChoicex1x2UtilityAffordable,butnotthemostpreferredaffordablebundle.Themostpreferred
oftheaffordablebundles.RationalConstrainedChoicex1x90RationalConstrainedChoicex1x2UtilityRationalConstrainedChoicex1x91RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti92RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti93RationalConstrainedChoiceUtilityx1x2RationalConstrainedChoiceUti94RationalConstrainedChoicex1x2RationalConstrainedChoicex1x95RationalConstrainedChoicex1x2Affordable
bundlesRationalConstrainedChoicex1x96RationalConstrainedChoicex1x2Affordable
bundlesRationalConstrainedChoicex1x97RationalConstrainedChoicex1x2Affordable
bundlesMorepreferred
bundlesRationalConstrainedChoicex1x98RationalConstrainedChoiceAffordable
bundlesx1x2Morepreferred
bundlesRationalConstrainedChoiceAff99RationalConstrainedChoicex1x2x1*x2*RationalConstrainedChoicex1x100RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isthemost
preferredaffordable
bundle.RationalConstrainedChoicex1x101RationalConstrainedChoiceThemostpreferredaffordablebundleiscalledtheconsumer’sORDINARYDEMANDatthegivenpricesandbudget.Ordinarydemandswillbedenotedby
x1*(p1,p2,m)andx2*(p1,p2,m).RationalConstrainedChoiceThe102RationalConstrainedChoiceWhenx1*>0andx2*>0thedemandedbundleisINTERIOR.Ifbuying(x1*,x2*)costs$mthenthebudgetisexhausted.RationalConstrainedChoiceWhe103RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.(x1*,x2*)exhauststhe
budget.RationalConstrainedChoicex1x104RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.
(a)(x1*,x2*)exhauststhe
budget;p1x1*+p2x2*=m.RationalConstrainedChoicex1x105RationalConstrainedChoicex1x2x1*x2*(x1*,x2*)isinterior.
(b)Theslopeoftheindiff.
curveat(x1*,x2*)equals
theslopeofthebudget
constraint.RationalConstrainedChoicex1x106RationalConstrainedChoice(x1*,x2*)satisfiestwoconditions:(a)thebudgetisexhausted;
p1x1*+p2x2*=m(b)theslopeofthebudgetconstraint,-p1/p2,andtheslopeoftheindifferencecurvecontaining(x1*,x2*)areequalat(x1*,x2*).RationalConstrainedChoice(x1107ComputingOrdinaryDemandsHowcanthisinformationbeusedtolocate(x1*,x2*)forgivenp1,p2andm?ComputingOrdinaryDemandsHow108ComputingOrdinaryDemands-aCobb-DouglasExample.SupposethattheconsumerhasCobb-Douglaspreferences.ComputingOrdinaryDemands-a109ComputingOrdinaryDemands-aCobb-DouglasExample.SupposethattheconsumerhasCobb-Douglaspreferences.
ThenComputingOrdinaryDemands-a110ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSisComputingOrdinaryDemands-a111ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSis
At(x1*,x2*),MRS=-p1/p2soComputingOrdinaryDemands-a112ComputingOrdinaryDemands-aCobb-DouglasExample.SotheMRSis
At(x1*,x2*),MRS=-p1/p2so(A)ComputingOrdinaryDemands-a113ComputingOrdinaryDemands-aCobb-DouglasExample.(x1*,x2*)alsoexhauststhebudgetso(B)ComputingOrdinaryDemands-a114ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)ComputingOrdinaryDemands-a115ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)SubstituteComputingOrdinaryDemands-a116ComputingOrdinaryDemands-aCobb-DouglasExample.Sonowweknowthat(A)(B)SubstituteandgetThissimplifiesto….ComputingOrdinaryDemands-a117ComputingOrdinaryDemands-aCobb-DouglasExample.ComputingOrdinaryDemands-a118ComputingOrdinaryDemands-aCobb-DouglasExample.Substitutingforx1*inthengivesComputingOrdinaryDemands-a119ComputingOrdinaryDemands-aCobb-DouglasExample.Sowehavediscoveredthatthemost
preferredaffordablebundleforaconsumer
withCobb-Douglaspreferences
isComputingOrdinaryDemands-a120ComputingOrdinaryDemands-aCobb-DouglasExample.x1x2ComputingOrdinaryDemands-a121RationalConstrainedChoiceWhenx1*>0andx2*>0
and(x1*,x2*)exhauststhebudget,
andindifferencecurveshaveno
‘kinks’,theordinarydemandsareobtainedbysolving:(a)p1x1*+p2x2*=y(b)theslopesofthebudgetconstraint,-p1/p2,andoftheindifferencecurvecontaining(x1*,x2*)areequalat(x1*,x2*).RationalConstrainedChoiceWhe122RationalConstrainedChoiceButwhatifx1*=0?Orifx2*=0?Ifeitherx1*=0orx2*=0thentheordinarydemand(x1*,x2*)isatacornersolutiontotheproblemofmaximizingutilitysubjecttoabudgetconstraint.RationalConstrainedChoiceBut123ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1ExamplesofCornerSolutions-124ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-125ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-126ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1>p2.ExamplesofCornerSolutions-127ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1<p2.ExamplesofCornerSolutions-128ExamplesofCornerSolutions--thePerfectSubstitutesCaseSowhenU(x1,x2)=x1+x2,themost
preferredaffordablebundleis(x1*,x2*)
whereandifp1<p2ifp1>p2.ExamplesofCornerSolutions-129ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2MRS=-1Slope=-p1/p2withp1=p2.ExamplesofCornerSolutions-130ExamplesofCornerSolutions--thePerfectSubstitutesCasex1x2Allthebundlesinthe
constraintareequallythe
mostpreferredaffordable
whenp1=p2.ExamplesofCornerSolutions-131ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2BetterExamplesofCornerSolutions-132ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2ExamplesofCornerSolutions-133ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Whichisthemostpreferred
affordablebundle?ExamplesofCornerSolutions-134ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Themostpreferred
affordablebundleExamplesofCornerSolutions-135ExamplesofCornerSolutions--theNon-ConvexPreferencesCasex1x2Themostpreferred
affordablebundleNoticethatthe“tangencysolution”
isnotthemostpreferredaffordable
bundle.ExamplesofCornerSolutions-136Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions137Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=0U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions138Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=-¥MRS=0U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions139Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2MRS=-¥MRS=0MRSisundefinedU(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions140Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Examplesof‘Kinky’Solutions141Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1Whichisthemost
preferredaffordablebundle?Examplesof‘Kinky’Solutions142Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1ThemostpreferredaffordablebundleExamplesof‘Kinky’Solutions143Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*Examplesof‘Kinky’Solutions144Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*(a)p1x1*+p2x2*=mExamplesof‘Kinky’Solutions145Examplesof‘Kinky’Solutions--thePerfectComplementsCasex1x2U(x1,x2)=min{ax1,x2}x2=ax1x1*x2*(a)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6 徽 章(教學(xué)設(shè)計(jì))蘇教版二年級(jí)下冊綜合實(shí)踐活動(dòng)
- 大型公共建筑合同投標(biāo)保函范本
- 分期房產(chǎn)合同范本
- 13《 畫楊桃》教學(xué)設(shè)計(jì)2023-2024學(xué)年統(tǒng)編版語文二年級(jí)下冊
- 同城小店轉(zhuǎn)讓合同范本
- 企業(yè)模具合同范本
- 5這些事我來做 第一課時(shí)(教學(xué)設(shè)計(jì))-部編版道德與法治四年級(jí)上冊
- 耐火原料采購合同范本
- 8《網(wǎng)絡(luò)新世界》(第一課時(shí))教學(xué)設(shè)計(jì)-2024-2025學(xué)年道德與法治四年級(jí)上冊統(tǒng)編版
- 勞務(wù)合同范本 貨運(yùn)
- 《魏書生班主任工作漫談》讀書心得體會(huì)課件
- 湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試參考試題庫(含答案)
- 中考語文非連續(xù)性文本閱讀10篇專項(xiàng)練習(xí)及答案
- 幼兒系列故事繪本課件達(dá)芬奇想飛-
- 教育評(píng)價(jià)學(xué)全套ppt課件完整版教學(xué)教程
- 出納收入支出日記賬Excel模板
- 給水排水用格柵除污機(jī)通用技術(shù)條件
- 一年級(jí)下冊綜合實(shí)踐活動(dòng)課件-身邊的水果和蔬菜全國通用16張
- 市政工程主要施工機(jī)械設(shè)備
- 書香里的童年
- 三周滾動(dòng)進(jìn)度計(jì)劃
評(píng)論
0/150
提交評(píng)論