![人工智能詳解課件_第1頁](http://file4.renrendoc.com/view/621bea721e98d97f7be24f7cd8fb7198/621bea721e98d97f7be24f7cd8fb71981.gif)
![人工智能詳解課件_第2頁](http://file4.renrendoc.com/view/621bea721e98d97f7be24f7cd8fb7198/621bea721e98d97f7be24f7cd8fb71982.gif)
![人工智能詳解課件_第3頁](http://file4.renrendoc.com/view/621bea721e98d97f7be24f7cd8fb7198/621bea721e98d97f7be24f7cd8fb71983.gif)
![人工智能詳解課件_第4頁](http://file4.renrendoc.com/view/621bea721e98d97f7be24f7cd8fb7198/621bea721e98d97f7be24f7cd8fb71984.gif)
![人工智能詳解課件_第5頁](http://file4.renrendoc.com/view/621bea721e98d97f7be24f7cd8fb7198/621bea721e98d97f7be24f7cd8fb71985.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//24MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr25Sounds-fingerprints25Sounds-fingerprints26IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube34ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianDiUnderstandingSemanticsUnderstandingSemantics人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Demographics–MSAdCenterLabDemographics–MSAdCenterLabCommercialIntentionsofGivenWebsiteCommercialIntentionsofGiven人工智能詳解課件人工智能詳解課件人工智能詳解課件人工智能詳解課件Ifyouwanttosellone,whatisthebestprice?N97(NokiaPhone)N97(NokiaPhone)MinorityGameEIFarolBarMinorityGameModelApplicationInRealworldTherearemorethan100IrishmusicloversbutElFarolhasonly60seats.Theshowisenjoyableonlywhenfewerthan60peopleshowup.Everypeopleshoulddecideweeklywhethergotothebartoenjoylivemusicintheriskofstayinginacrowdplaceorstayathome.Therulesaresimple:afinitenumberofplayershavetochoosebetweentwosides;whoeverendsupintheminoritysideisawinner.SimplifiedfrommarketaimingtoanalyzecomplexfinancialmarketMinorityGameEIFarolBarMinorCollectiveBehaviorDecompositionCollectiveBehaviorDecompositSimulationResults(Li,MaandQin,2010)SimulationResults(Li,Maand人工智能詳解課件人工智能詳解課件YingMa,GuanyiLi,YingsaiDongandZengchangQin(2010),Minoritygamedataminingformarketpredictions,forStockMarketPredictions,toappearintheProceedingsofAAMAS2010.GuanyiLi,YingMa,YingsaiDongandZengchangQin(2010),Behaviorlearninginminoritygames,ToappearintheProceedingsofCARE2009.ZengchangQin,MarcusThintandZhihengHuang(2009),Rankinganswersbyhierarchicaltopicmodels,ProceedingsofIEA/AIE2009,LNCS5579,pp.103-112,Springer.ZhihengHuang,MarcusThintandZengchangQin(2008),Questionclassificationusingheadwordsandtheirhypernyms,TheProceedingsofConferenceonEmpiricalMethodsonNaturalLanguageProcessing,pp.927-936,ACL.ReferencesYingMa,GuanyiLi,YingsaiDoNon-academicNon-academicAcademicAIAcademicAIFuzzyLogicandLogicofScienceFuzzyLogicandLogicofScienNLP&ANNNLP&ANNGA,ALIFE&Multi-agentGA,ALIFE&Multi-agentWeb:orGoogle“ZengchangQin”formyLinkedInProfiles.ContactInformationWeb:orGoogThankyouverymuch!Anyquestions?人工智能詳解課件ModernArtificialIntelligenceandItsImportanceintheFutureWorldZengchangQin(Ph.D.)IntelligentComputingandMachineLearningLabSchoolofAutomationandElectricalEngineeringBeihangUniversityShaheCampusOct272010ModernArtificialIntelligenceThisisScienceThisisScienceGiveabigpictureofmodernArtificialIntelligenceandunderstandwhyitisimportantinthecurrentandthefutureworld.WehavesuchadirectionofresearchintheschoolofASEE.ToclarifythemisunderstandingofA.I.fromthoserobotmoviesandsciencefictions.AboutThisTalkGiveabigpictureofmodernAIhavebeenworkinginA.I.areforthepastdecade.Ienjoymoviesandunboundedthinking.Iamalwaysintriguedbyanykindsfexcellentideasfromhumanintelligence.Feelfreetoaskanyquestionsyouhaveinmind,noguaranteetobeanswered.AboutTheSpeakerAboutTheSpeakerMisunderstandingArtificialIntelligence(A.I.)≠RoboticsJohnMcCarthy(Stanford)MisunderstandingArtificialIntArtificialIntelligence–Wefear?ArtificialIntelligence–WefI,RobotTheThreeLawsofRoboticsbyIssacAsimov
areasthefollows:Arobotmaynotinjureahumanbeingor,throughinaction,allowahumanbeingtocometoharm.Arobotmustobeyanyordersgiventoitbyhumanbeings,exceptwheresuchorderswouldconflictwiththeFirstLaw.ArobotmustprotectitsownexistenceaslongassuchprotectiondoesnotconflictwiththeFirstorSecondLaw.I,RobotTheThreeLawsofRoboMyPhilosophyofModernA.I.ArtificialIntelligenceisamathematical/computingtechnologythatwillmakelifebetter.Ihavebeeninterestedinmakingmachinesintelligentbydesigningalgorithms.Imaynotbelievethatonedaywecanrecreatehumanbrainsusingsiliconchips,butIbelievethatcomputingwillaidourbrainstodomissionsimpossibleinthefuture.MyPhilosophyofModernA.I.ArChineseRoomParadoxChineseRoomParadoxModernA.I.–TheEngineeringApproach:MachineLearningandDataMiningPatternRecognition,ComputervisionandImageProcessingDistributedA.I./multi-agentsystemsBiometricsandcomputerforensicsNaturalLanguageProcessingIntelligentSearchandInformationRetrievalComputationalCognitiveScienceComputationalNeuroscienceandbioinformaticsComputationalCognitiveScienceComputational/BehaviorFinanceBehaviorTargetingandPersonalServicesDigitalAdvertisements/recommendationsystemsModernA.I.–TheEngineeringPhilosophyofMachineLearningMachineLearning–searchinthehypothesisspacetofindtheonesthatmatchthedata.UsingOccam’srazor,wechoosethesimplestone.WilliamofOckham(orOccam)wasa14th-centuryEnglishlogicianandFranciscanfriarwho'snameisgiventotheprinciplethatwhentryingtochoosebetweenmultiplecompetingtheoriesthesimplesttheoryisprobablythebest.ThisprincipleisknownasOckham'srazor.PhilosophyofMachineLearningExampleExampleExample2Example2WhyMachineLearningisimportant?Tofinethetheorythatexplainsthedata,weusuallypreferthesimpleones.Machinelearningandscientificdiscoverysharesimilarities.KarlPopperWhyMachineLearningisimportLogicProgrammingLondonUndergroundExampleLogicProgrammingLondonUndergFuzzyLogicFuzzyLogicMembershipfunction(continuous)Membershipfunction(continuouMembershipFunctionsMembershipFunctionsSomeIntuitionSomeIntuitionProfessorofFuzzyLogicProfessorofFuzzyLogicMulti-agentSystemDistributedA.I.-coordinationMulti-agentSystemDistributedDatamining
istheprocessofextractingpatternsfromdata-Torturethedatauntiltheyconfess.Dataiseverywhereandindifferenttypes.PatternRecognitionandDataMiningPatternRecognitionandDataM
<!DOCTYPEHTMLPUBLIC"-//W3C//DTDHTML4.0Transitional//EN"><html><head> <metahttp-equiv="Content-Type"content="text/html;charset=utf-8"> <title>WelcometoFairmontNET</title></head><STYLEtype="text/css">.stdtext{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:#1F3D4E;}.stdtext_wh{font-family:Verdana,Arial,Helvetica,sans-serif;font-size:11px;color:WHITE;}</STYLE><bodyleftmargin="0"topmargin="0"marginwidth="0"marginheight="0"bgcolor="BLACK"><TABLEcellpadding="0"cellspacing="0"width="100%"border="0"><TR><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD><TD><imgsrc="/TFN/en/CDA/Images/common/labels/decorative.gif"></td><TDwidth=50%background="/TFN/en/CDA/Images/common/labels/decorative_2px_blk.gif"> </TD></TR></TABLE><tr><tdalign="right"valign="middle"><IMGsrc="/TFN/en/CDA/Images/common/labels/centrino_logo_blk.gif"></td></tr></body></html>HTMLandEmailsReturn-path
<bmiller@>Received
fromrelay2.EECS.Berkeley.EDU(relay2.EECS.Berkeley.EDU[8])byimap4.CS.Berkeley.EDU(iPlanetMessagingServer5.2HotFix1.16(builtMay142003))withESMTPid<0HZ000F506JV5S@imap4.CS.Berkeley.EDU>;Tue,08Jun200411:40:43-0700(PDT)Received
fromrelay3.EECS.Berkeley.EDU(localhost[])byrelay2.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58Ieg3N000927;Tue,08Jun200411:40:43-0700(PDT)Received
fromredbirds(dhcp-168-35.EECS.Berkeley.EDU[5])byrelay3.EECS.Berkeley.EDU(8.12.10/8.9.3)withESMTPidi58IegFp007613;Tue,08Jun200411:40:42-0700(PDT)Date
Tue,08Jun200411:40:42-0700From
RobertMiller<bmiller@>Subject
RE:SLTheadcount=25In-reply-to
<.0.20040607101523.02623298@imap.eecs.B>To
'RandyKatz'<randy@>Cc
"'GlendaJ.Smith'"<glendajs@>,'GertLanckriet'<gert@>Message-id
<200406081840.i58IegFp007613@relay3.EECS.Berkeley.EDU>MIME-version
1.0X-MIMEOLE
ProducedByMicrosoftMimeOLEV6.00.2800.1409X-Mailer
MicrosoftOfficeOutlook,Build11.0.5510Content-type
multipart/alternative;boundary="----=_NextPart_000_0033_01C44D4D.6DD93AF0"Thread-index
AcRMtQRp+R26lVFaRiuz4BfImikTRAA0wf3Qtheheadcountisnow32.
----------------------------------------RobertMiller,AdministrativeSpecialistUniversityofCalifornia,BerkeleyElectronicsResearchLab634SodaHall#1776Berkeley,CA
94720-1776Phone:510-642-6037fax:
510-643-1289<!DOCTYPEHTMLPUBLIC"-//93MedicalImage,handwrittenrecognition24MedicalImage,handwrittenr94Sounds-fingerprints25Sounds-fingerprints95IntelligentSearchandBio-identity26IntelligentSearchandBio-iMirco-arrayDataofGenesMirco-arrayDataofGenesDrugDesignsDrugDesignsComputerHumanInterface–EEGsignalsComputerHumanInterface–EEGStockIndexStockIndexDataTypes–frauddetectionDataTypes–frauddetectionSocialNetworkMiningMonitoringfluthroughtwitter.Monitoringtrafficthroughmobilecalls.SocialNetworkMiningEntityCubeEntityCube103ExperimentalEconomicsVernonL.Smith"forhavingestablishedlaboratoryexperimentsasatoolinempiricaleconomicanalysis,especiallyinthestudyofalternativemarketmechanisms”From/34ExperimentalEconomics"foBehaviorEconomics–IrrationalAgentsNotableforhisworkonthepsychologyofjudgmentsanddecisionmaking,behavioraleconomics.Winning$10or$1000withchanceof1%.Losing$10or$1000withchanceof1%BehaviorEconomics–IrrationaSoftwareAgentsforTradingSoftwareAgentsforTradingWhatisthecapitalofChina?WhatisthepopulationofBeijing?WhatisthepopulationofthecapitalofChina?ReasoningwithNaturalLanguageReasoningwithNaturalLanguEvolutionaryComputingGeneticAlgorithmSirRichardDawkins“TheselfishGenes”EvolutionaryComputingGeneticStochasticOptimizationStochasticOptimizationCellularAutomatonWolframwaseducatedat
Eton.Attheageof15,hepublishedanarticleon
particlephysics[4]
andentered
OxfordUniversity
atage17.Hewroteawidelycitedpaperonheavy
quark
productionatage18.[2]Wolframreceivedhis
Ph.D.
inparticlephysicsfromthe
CaliforniaInstituteofTechnology
atage20[5]
andjoinedthefacultythere.Hebecamehighlyinterestedin
cellularautomata
atage21.[2]
Wolfram'sworkinparticlephysics,cosmologyandcomputerscienceearnedhimoneofthefirst
MacArthurawards.CellularAutomatonWolframwasDecisionTreesDecisionTreesP(h|e)=P(e|h)P(h)/P(e)AProofthateveryonecanunderstandP(h,e)=P(h|e)P(e)P(e,h)=P(e|h)P(h)BayesianStatisticsBayesianStatisticsGraphicalModelofGaussianDistributionandHiearachicalStructurewithLatentVariables
GraphicalModelofGaussianD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit3 Weather A let's learn(說課稿)-2023-2024學(xué)年人教PEP版英語四年級(jí)下冊(cè)001
- 2025寫場(chǎng)地租賃合同范文
- 2025工程建設(shè)招標(biāo)投標(biāo)合同履約銀行保證書
- Unit 1 Playtime Lesson 3(說課稿)-2023-2024學(xué)年人教新起點(diǎn)版英語二年級(jí)下冊(cè)
- 2023九年級(jí)歷史下冊(cè) 第一單元 殖民地人民的反抗與資本主義制度的擴(kuò)展第3課 美國內(nèi)戰(zhàn)說課稿 新人教版
- 2025泵車租賃合同
- 2024-2025學(xué)年高中歷史 專題二 近代中國資本主義的曲折發(fā)展 2.1 近代中國民族工業(yè)的興起說課稿1 人民版必修2
- 蔬菜物資發(fā)放方案
- 養(yǎng)生館前臺(tái)合同范例
- 代理經(jīng)營店鋪合同范例
- 教學(xué)的模樣讀書分享
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專家共識(shí)(2024版)解讀 課件
- 江蘇省無錫市2024年中考語文試卷【附答案】
- 五年級(jí)上冊(cè)小數(shù)脫式計(jì)算200道及答案
- 2024年秋新滬科版物理八年級(jí)上冊(cè) 第二節(jié) 測(cè)量:物體的質(zhì)量 教學(xué)課件
- 直播帶貨基本操作流程(直播帶貨流程完整版)
- 2024義務(wù)教育英語課程標(biāo)準(zhǔn)2022版考試題庫附含答案
- 多旋翼無人機(jī)駕駛員執(zhí)照(CAAC)備考試題庫大全-下部分
- 浙教版七年級(jí)上冊(cè)數(shù)學(xué)第4章代數(shù)式單元測(cè)試卷(含答案)
- 七年級(jí)下冊(cè)第六章《人體生命活動(dòng)的調(diào)節(jié)》作業(yè)設(shè)計(jì)
- 特種設(shè)備使用單位日管控、周排查、月調(diào)度示范表
評(píng)論
0/150
提交評(píng)論