版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
3.HeterogeneousFlowandSeparation
3.1FlowPastImmersedObjectsDefinitionofDragCoefficientforFlowPastImmersedObjects3.HeterogeneousFlowandSepa1.IntroductionandtypesofdragTheflowoffluidsoutsideimmersedbodiesappearsinmanychemicalengineeringapplicationsandotherprocessingapplications.Forexamplesettling,dryingandfiltration,andsoon.1.Introductionandtypesof2.Dragcoefficient
Correlationsofthegeometryandflowcharacteristicsforsolidobjectssuspendedinfluidaresimilarinconceptandformtothefrictionfactor-Reynoldsnumbercorrelationgivenforflowinsideconduits.2.DragcoefficientCorrelaInflowthroughpipes,thefrictionfactorwasdefinedastheratioofthedragforceperunitareatotheproductoffluiddensityandvelocityhead.Inflowthroughpipes,the
ForflowpastimmersedobjectsthedragcoefficientisobtainedbysubstitutingCDforthefrictionfactorKfinequation(1.4-32
)3.1-1
thereforeForflowpastimmersedobjecTheReynoldsnumberforaparticleinafluidisdefinedasFromdimensionalanalysis,thedragcoefficientofasmoothsolidinanincompressiblefluiddependsuponaReynoldsnumberandthenecessaryshaperatios.Foragivenshape3.1-2
TheReynoldsnumberforapartDragcoefficientsoftypicalshapesForeachparticularshapeofobjectandorientationoftheobjectwithrespecttothedirectionofflow,adifferentrelationofCDversusReexists.CorrelationsofdragcoefficientversusReynoldsnumberareshowninfigure.Dragcoefficientsoftypicals流體力學(xué)與傳熱課件Heterogeneous-Flow-and-SeparationThesecurveshavebeendeterminedexperimentally.However,inthelaminarregionforlowReynoldsnumbers,lessthanabout1.0,theexperimentaldragforceforasphereisthesameasthetheoreticalStokes'lawequationasfollows:3.1-3
ThesecurveshavebeendeteCombiningEqs.(3.1-1)and(3.1-3)andsolvingforCD,thedragcoefficientpredictedbyStokes'lawis3.1-4
CombiningEqs.(3.1-1)and(3.ThevariationofCDwithReisquitecomplicatedbecauseoftheinteractionofthefactorsthatcontrolskindragandformdrag.Forasphere,astheReynoldsnumberisincreasedbeyondtheStokes'lawrange,separationoccursandawakeisformed.ThevariationofCDwithReisFurtherincreasesinRecauseshiftsintheseparationpoint.AtaboutRe
=3×105thesuddendropinCDistheresultoftheboundarylayerbecomingcompletelyturbulentandthepointofseparationmovingdownstream.FurtherincreasesinRecauseIntheregionofReabout1×103to2×105,thedragcoefficientisapproximatelyconstantforeachshapeandCD=0.44forasphere.IntheregionofReabout1×103.1.2FlowthroughBedsofSolids
1.Introduction
Asystemofconsiderableimportanceinchemicalandotherprocessengineeringfieldsisthepackedbed,whichisusedforafixed-bedcatalyticreactor,adsorptionofasolute,absorption,filterbed,andsoon3.1.2FlowthroughBedsofSolInthetheoreticalapproachused,thepackedcolumnisregardedasabundleofcrookedtubesofvaryingcross-sectionalarea.ThetheorydevelopedinChapter1forsinglestraighttubesisusedtodeveloptheresultsforthebundleofcrookedtubes.Inthetheoreticalapproachus2.LaminarflowinpackedbedsCertaingeometricrelationsforparticlesinpackedbedsareusedinthederivationsforflow.Thevoidfractionεinapackedbedisdefinedas2.LaminarflowinpackedbedsThespecificsurfaceofaparticleavisdefinedasForasphericalparticle,,Thespecificsurfaceofapartwhereaistheratiooftotalsurfaceareainthebedtototalvolumeofbed(voidvolumeplusparticlevolume)Since(1-ε)isthevolumefractionofparticlesinthebedwhereaistheratiooftotalTheaverageinterstitialvelocityinthebedisu'andisrelatedtothesuperficialvelocityubasedonthecrosssectionoftheemptycontainerby3.1-9TheaverageinterstitialvelocTodeterminetheequivalentchanneldiameterDe,thesurfaceareafornparallelchannelsoflengthLissetequaltothesurface-volumeratiotimestheparticlevolumeS0L(1-ε).3.1-6whereS0isthecross-sectionalareaofthebedTodeterminetheequivalentchThevoidvolumeinthebedisthesameasthetotalvolumeofthenchannels3.1-7CombiningEqs.(3.1-6)and(3.1-7)givesanequationforDe3.1-8ThevoidvolumeinthebedisForflowatverylowReynoldsnumbers,thepressuredropshouldvarywiththefirstpowerofthevelocityandinverselywiththesquareofthechannelsize,inaccordancewiththeHagen-Poiseulliequationforlaminarflowinstraighttubes.ForflowatverylowReynoldsTheequationsforu'(equation3.1-9)andDe(equation3.1-8
)areusedintheHagen-PoiseuilleequationTheequationsforu'(equationor3.1-11ThetrueLislargerbecauseofthetortuouspath.Experimentaldatagiveanempiricalconstantof150for72or3.1-11ThetrueLislargerEquation(3.1-12
)iscalledtheBlake-Kozenyequationforlaminarflow,voidfractionslessthan0.5,effectiveparticlediameterDp,andRep<10:3.1-12
Equation(3.1-12)iscalledt3.2MotionofParticlesthroughFluidsManyprocessingsteps,especiallymechanicalseparations,involvethemovementofsolidparticlesorliquiddropsthroughafluid.Thefluidmaybegasorliquid,anditmaybeflowingoratrest.3.2MotionofParticlesthrougtheestimationofdustandfumesfromairorfluegas,theremovalofsolidsfromliquidwastes,andtherecoveryofacidmistsfromthewastegasofanacidplantExamplesare:theestimationofdustandfumThreeforcesactonaparticlemovingthroughafluid:theexternalforce,gravitationalorcentrifugal;Threeforcesactonaparticle(2)thebuoyantforce,whichactsparallelwiththeexternalforcebutintheoppositedirection;and(3)thedragforce,whichappearswheneverthereisrelativemotionbetweentheparticleandthefluid.(2)thebuoyantforce,whichaMechanicsofparticlemotion
Themovementofaparticlethroughafluidrequiresanexternalforceactingontheparticle.Thisforcemaycomefromadensitydifferencebetweentheparticleandthefluid.MechanicsofparticlemotionItalsomaybetheresultelectricormagneticfields.Inthissectiononlygravitationalorcentrifugalforces,whicharisefromdensitydifferences,areconsidered.ItalsomaybetheresulteInthegeneralcase,thedirectionofmovementoftheparticlerelativetothefluidmaynotbeparallelwiththedirectionoftheexternalandbuoyantforcesInthegeneralcase,thedirecOnlytheone-dimensionalcase,wherethelinesofactionofallforcesactingontheparticlearecollinear,isconsideredinthissection.Onlytheone-dimensionalcaEquationforone-dimensionalmotionofparticlethroughfluid
ConsideraparticleofvolumeVp,densityρpmovingthroughafluid.Threeforcesactingonaparticleare:(1)externalforce:Fe=m
ae(2)buoyantforce:(3)dragforce:FeFbFDEquationforone-dimensionalmThentheresultantforceontheparticleisFe-Fb–Fd,(3.2-1
)Theaccelerationoftheparticleisdu/dt,ThentheresultantforceonthsubstitutingtheforcestoEq(3.2-1
)gives(3.2-5
)substitutingtheforcestoEq(Theterminalvelocityisfoundbytakingdu/dt=03.2-5TheterminalvelocityisfoundMotionfromgravitationalforce
Iftheexternalforceisgravity,ae
isg,theaccelerationofgravity,andEq.(3.2-5)becomes3.2-6MotionfromgravitationalforcMotioninacentrifugalfield
Theaccelerationfromacentrifugalforcefromcircularmotionisae
=rω2
(3.2-7)
(3.2-8)MotioninacentrifugalfieldTerminalvelocity
Thedragalwaysincreaseswithvelocity,theaccelerationdu/dtofaparticledecreaseswithtimeandapproachestozero.Theparticlequicklyreachesaconstantvelocity,whichisthemaximumattainableundercircumstances,andwhichiscalledtheterminalvelocityut.TerminalvelocityThedragaTheequationfortheterminalvelocityut
isfound,forgravitationalsettling,bytakingdu/dt=0.ThenfromEq.(3.2-6),3.2-9TheequationfortheterminalInmotionfromacentrifugalforce,thevelocitydependsontheradius,andtheaccelerationisnotconstantiftheparticleisinmotionwithrespecttothefluid.InmotionfromacentrifugalfInmanypracticalusesofcentrifugalforce,however,du/dtissmallincomparisonwiththeothertwotermsinEq.(3.2-8)InmanypracticalusesofcentIfdu/dtisneglected,aterminalvelocityatanygivenradiuscanbedefinedbytheequation3.2-10Ifdu/dtisneglected,atermiDragcoefficientThequantitativeuseofEqs.(3.2-5)to(3.2-10)requiresthatnumericalvaluesbeavailableforthedragcoefficientCD.FigureshowsthedragcoefficientasafunctionofReynoldsnumber.DragcoefficientThequantitatiThedragcurveshowninfigureapplies,however,onlyunderrestrictedconditions.Theparticlemustbeasolidsphere,itmustbefarfromotherparticlesandfromthevesselwallsothattheflowpatternaroundtheparticleisnotdistorted,andtheparticlemustbemovingatitsterminalvelocitywithrespecttothefluid.ThedragcurveshowninfigureWhentheparticleisatthesufficientdistancefromtheboundariesofthecontainerandfromotherparticles,sothatitsfallisnotaffectedbythem,theprocessiscalledfreesettling.Ifthemotionofparticleisimpededbyotherparticles,whichhappedwhentheparticlesareneareachothereventhoughtheymaynotactuallybecolliding,theprocessiscalledhinderedsettling.WhentheparticleisattheIftheparticlesareverysmall,Brownianmovementappears.Thiseffectbecomesappreciableataparticlesizeofabout2-3μmandpredominatesovertheforceofgravitywithaparticlesizeof0.1orless.IftheparticlesareverysTherandommovementoftheparticletendstosuppresstheeffectoftheforceofgravity,sosettlingdoesnotoccur.ApplicationofcentrifugalforcereducestherelativeeffectofBrownianmovement.Therandommovementofthemovementofsphericalparticles
Iftheparticlesarespheresofdiameterdp(3.2-11
)(3.2-12
)AndmovementofsphericalparticleSubstitutionofmandApfromEq(3.2-11
)and(3.2-12
)intoEq(3.2-9)and(3.2-10)gives(3.2-13
)(3.2-13a)andSubstitutionofmandApfTheterminalvelocitiesatthedifferentReynoldsnumberIntheory,stokes’lawisvalidonlywhenReisconsiderablylessthanunity.Eq.(3.2-13
)maybeusedwithsmallerrorforallReynoldsnumberslessthan1.Theterminalvelocitiesatthe
Forgravitysettlingofaspheres,atlowReynoldsnumbers,thedragcoefficientvariesinverselywithRe.(3.2-14
)(3.2-16
)andsubstitutingEq(3.2-14
)intoEq(3.2-13
),givesForgravitysettlingofasp
Equation(3.2-16
)isknownasStokes′law,andappliesforparticleReynoldsnumberslessthan1.0.substitutingEq(3.2-14
)intoEq(3.2-13a),gives(3.2-20
)Equation(3.2-20
)canbeusedtopredictthevelocityofasmallsphereinacentrifugalfield.Equation(3.2-16)isknownaForRe>1000,thedragcoefficientisapproximatelyconstantat0.40to0.45,andlets(3.2-19)so
theequationisCD=0.44ForRe>1000,thedragcoeffEquation(3.2-19)isNewton’lawandappliesonlyforfairlylargeparticlesfallingingasesorlow-viscosityfluids.Equation(3.2-19)isNewton’CriterionforsettlingregimeToidentifytherangeinwhichthemotionoftheparticlelies,thevelocitytermiseliminatedfromReynoldsnumberbysubstitutingutfromEq.(3.2-16
)togive,fortheStokes’lawrange(3.2-21
)CriterionforsettlingregimeRe=K3/18.Re<1.0,toprovideaconvenientcriterionK,let(3.2-22
)Re=K3/18.Re<1.0,toprovide
Then,fromEq(3.2-21
),Re=K3/18.SettingRe=1.0andsolvinggivesK=2.6.Ifthesizeoftheparticleisknown,KcanbecalculatedfromEq(3.2-22).IfKsocalculatedislessthan2.6,Stokes’lawapplies.Then,fromEq(3.2-21),Re=
SubstitutionforutfromEq.(3.2-19)showsthatfortheNewton’slawrangeRe=1.75K1.5.IntherangebetweenStokes’lawandNewton’slaw(2.6<K<68.9),theterminalvelocityiscalculatedfromEq(3.2-13
)usingavalueofCDfoundbytrialfromFig.Settingthisequalto1000andsolvinggivesK=68.9.ThusifKisgreaterthan68.9,Newton’slawapplies.SubstitutionforutfromEqproblem1SettlingofasphericalparticleinaairisfollowedStokes’law,ifthetemperaturechangesfrom25to50℃,theterminalvelocitywill();
ifsettlinginliquid,theterminalvelocitywill()
Theterminalvelocityisthevelocitythattheaccelerationthataparticlemovesthroughthefluidapproachesto()problem1Settlingofasphericaproblem2Asinglesphericalparticlesettlingfreelyinthefluidanditislaminarflow,whentheparticlediameterincreases,theterminalvelocityuwill
;whentheviscosityoffluidincreases,uwill
;ifthefluidisagas,whathappenstou
ifthetemperatureincrease?
problem2AsinglesphericalparAsshownbyequations(3.2-16
)and(3.2-19),theterminalvelocityutvarieswiththesquareofdiameterofparticleinthe()range,whereasinthe()rangeitvarieswith0.5powerofthediameterofparticleForagivenpackedbed,Blake-Kozenyequationindicatesthattheflowis()tothepressuredropand()proportionaltothefluidviscosity.Asshownbyequations(3.2-161、試計算直徑為30μm的球形石英顆粒(其密度為2650kg/m3),在20℃水中和20℃常壓空氣中的自由沉降速度。Tocalculatetheterminalvelocityofasphericalquartzparticle,30μmindiameterand2650kg/m3indensity,settlinginthewaterandtheairatthetemperatureof20℃,respectively.1、試計算直徑為30μm的球形石英顆粒(其密度為2650kgSolution:d=30μm、ρs=2650kg/m3(1)μ=1.01×10-3Pa·sandρ=998kg/m3forwateratt=20℃checkItisfollowedstokes’lowut=8.02×10-4m/sSolution:d=30μm、ρs=2650kg/m(2)μ=1.81×10-5Pa·sρ=1.21kg/m3for
theairatt=20℃Assumingthatthetypeofflowingisfollowedstokes’lawcheckut=7.18×10-2m/s。
(2)μ=1.81×10-5Pa·sρ=1.3.HeterogeneousFlowandSeparation
3.1FlowPastImmersedObjectsDefinitionofDragCoefficientforFlowPastImmersedObjects3.HeterogeneousFlowandSepa1.IntroductionandtypesofdragTheflowoffluidsoutsideimmersedbodiesappearsinmanychemicalengineeringapplicationsandotherprocessingapplications.Forexamplesettling,dryingandfiltration,andsoon.1.Introductionandtypesof2.Dragcoefficient
Correlationsofthegeometryandflowcharacteristicsforsolidobjectssuspendedinfluidaresimilarinconceptandformtothefrictionfactor-Reynoldsnumbercorrelationgivenforflowinsideconduits.2.DragcoefficientCorrelaInflowthroughpipes,thefrictionfactorwasdefinedastheratioofthedragforceperunitareatotheproductoffluiddensityandvelocityhead.Inflowthroughpipes,the
ForflowpastimmersedobjectsthedragcoefficientisobtainedbysubstitutingCDforthefrictionfactorKfinequation(1.4-32
)3.1-1
thereforeForflowpastimmersedobjecTheReynoldsnumberforaparticleinafluidisdefinedasFromdimensionalanalysis,thedragcoefficientofasmoothsolidinanincompressiblefluiddependsuponaReynoldsnumberandthenecessaryshaperatios.Foragivenshape3.1-2
TheReynoldsnumberforapartDragcoefficientsoftypicalshapesForeachparticularshapeofobjectandorientationoftheobjectwithrespecttothedirectionofflow,adifferentrelationofCDversusReexists.CorrelationsofdragcoefficientversusReynoldsnumberareshowninfigure.Dragcoefficientsoftypicals流體力學(xué)與傳熱課件Heterogeneous-Flow-and-SeparationThesecurveshavebeendeterminedexperimentally.However,inthelaminarregionforlowReynoldsnumbers,lessthanabout1.0,theexperimentaldragforceforasphereisthesameasthetheoreticalStokes'lawequationasfollows:3.1-3
ThesecurveshavebeendeteCombiningEqs.(3.1-1)and(3.1-3)andsolvingforCD,thedragcoefficientpredictedbyStokes'lawis3.1-4
CombiningEqs.(3.1-1)and(3.ThevariationofCDwithReisquitecomplicatedbecauseoftheinteractionofthefactorsthatcontrolskindragandformdrag.Forasphere,astheReynoldsnumberisincreasedbeyondtheStokes'lawrange,separationoccursandawakeisformed.ThevariationofCDwithReisFurtherincreasesinRecauseshiftsintheseparationpoint.AtaboutRe
=3×105thesuddendropinCDistheresultoftheboundarylayerbecomingcompletelyturbulentandthepointofseparationmovingdownstream.FurtherincreasesinRecauseIntheregionofReabout1×103to2×105,thedragcoefficientisapproximatelyconstantforeachshapeandCD=0.44forasphere.IntheregionofReabout1×103.1.2FlowthroughBedsofSolids
1.Introduction
Asystemofconsiderableimportanceinchemicalandotherprocessengineeringfieldsisthepackedbed,whichisusedforafixed-bedcatalyticreactor,adsorptionofasolute,absorption,filterbed,andsoon3.1.2FlowthroughBedsofSolInthetheoreticalapproachused,thepackedcolumnisregardedasabundleofcrookedtubesofvaryingcross-sectionalarea.ThetheorydevelopedinChapter1forsinglestraighttubesisusedtodeveloptheresultsforthebundleofcrookedtubes.Inthetheoreticalapproachus2.LaminarflowinpackedbedsCertaingeometricrelationsforparticlesinpackedbedsareusedinthederivationsforflow.Thevoidfractionεinapackedbedisdefinedas2.LaminarflowinpackedbedsThespecificsurfaceofaparticleavisdefinedasForasphericalparticle,,Thespecificsurfaceofapartwhereaistheratiooftotalsurfaceareainthebedtototalvolumeofbed(voidvolumeplusparticlevolume)Since(1-ε)isthevolumefractionofparticlesinthebedwhereaistheratiooftotalTheaverageinterstitialvelocityinthebedisu'andisrelatedtothesuperficialvelocityubasedonthecrosssectionoftheemptycontainerby3.1-9TheaverageinterstitialvelocTodeterminetheequivalentchanneldiameterDe,thesurfaceareafornparallelchannelsoflengthLissetequaltothesurface-volumeratiotimestheparticlevolumeS0L(1-ε).3.1-6whereS0isthecross-sectionalareaofthebedTodeterminetheequivalentchThevoidvolumeinthebedisthesameasthetotalvolumeofthenchannels3.1-7CombiningEqs.(3.1-6)and(3.1-7)givesanequationforDe3.1-8ThevoidvolumeinthebedisForflowatverylowReynoldsnumbers,thepressuredropshouldvarywiththefirstpowerofthevelocityandinverselywiththesquareofthechannelsize,inaccordancewiththeHagen-Poiseulliequationforlaminarflowinstraighttubes.ForflowatverylowReynoldsTheequationsforu'(equation3.1-9)andDe(equation3.1-8
)areusedintheHagen-PoiseuilleequationTheequationsforu'(equationor3.1-11ThetrueLislargerbecauseofthetortuouspath.Experimentaldatagiveanempiricalconstantof150for72or3.1-11ThetrueLislargerEquation(3.1-12
)iscalledtheBlake-Kozenyequationforlaminarflow,voidfractionslessthan0.5,effectiveparticlediameterDp,andRep<10:3.1-12
Equation(3.1-12)iscalledt3.2MotionofParticlesthroughFluidsManyprocessingsteps,especiallymechanicalseparations,involvethemovementofsolidparticlesorliquiddropsthroughafluid.Thefluidmaybegasorliquid,anditmaybeflowingoratrest.3.2MotionofParticlesthrougtheestimationofdustandfumesfromairorfluegas,theremovalofsolidsfromliquidwastes,andtherecoveryofacidmistsfromthewastegasofanacidplantExamplesare:theestimationofdustandfumThreeforcesactonaparticlemovingthroughafluid:theexternalforce,gravitationalorcentrifugal;Threeforcesactonaparticle(2)thebuoyantforce,whichactsparallelwiththeexternalforcebutintheoppositedirection;and(3)thedragforce,whichappearswheneverthereisrelativemotionbetweentheparticleandthefluid.(2)thebuoyantforce,whichaMechanicsofparticlemotion
Themovementofaparticlethroughafluidrequiresanexternalforceactingontheparticle.Thisforcemaycomefromadensitydifferencebetweentheparticleandthefluid.MechanicsofparticlemotionItalsomaybetheresultelectricormagneticfields.Inthissectiononlygravitationalorcentrifugalforces,whicharisefromdensitydifferences,areconsidered.ItalsomaybetheresulteInthegeneralcase,thedirectionofmovementoftheparticlerelativetothefluidmaynotbeparallelwiththedirectionoftheexternalandbuoyantforcesInthegeneralcase,thedirecOnlytheone-dimensionalcase,wherethelinesofactionofallforcesactingontheparticlearecollinear,isconsideredinthissection.Onlytheone-dimensionalcaEquationforone-dimensionalmotionofparticlethroughfluid
ConsideraparticleofvolumeVp,densityρpmovingthroughafluid.Threeforcesactingonaparticleare:(1)externalforce:Fe=m
ae(2)buoyantforce:(3)dragforce:FeFbFDEquationforone-dimensionalmThentheresultantforceontheparticleisFe-Fb–Fd,(3.2-1
)Theaccelerationoftheparticleisdu/dt,ThentheresultantforceonthsubstitutingtheforcestoEq(3.2-1
)gives(3.2-5
)substitutingtheforcestoEq(Theterminalvelocityisfoundbytakingdu/dt=03.2-5TheterminalvelocityisfoundMotionfromgravitationalforce
Iftheexternalforceisgravity,ae
isg,theaccelerationofgravity,andEq.(3.2-5)becomes3.2-6MotionfromgravitationalforcMotioninacentrifugalfield
Theaccelerationfromacentrifugalforcefromcircularmotionisae
=rω2
(3.2-7)
(3.2-8)MotioninacentrifugalfieldTerminalvelocity
Thedragalwaysincreaseswithvelocity,theaccelerationdu/dtofaparticledecreaseswithtimeandapproachestozero.Theparticlequicklyreachesaconstantvelocity,whichisthemaximumattainableundercircumstances,andwhichiscalledtheterminalvelocityut.TerminalvelocityThedragaTheequationfortheterminalvelocityut
isfound,forgravitationalsettling,bytakingdu/dt=0.ThenfromEq.(3.2-6),3.2-9TheequationfortheterminalInmotionfromacentrifugalforce,thevelocitydependsontheradius,andtheaccelerationisnotconstantiftheparticleisinmotionwithrespecttothefluid.InmotionfromacentrifugalfInmanypracticalusesofcentrifugalforce,however,du/dtissmallincomparisonwiththeothertwotermsinEq.(3.2-8)InmanypracticalusesofcentIfdu/dtisneglected,aterminalvelocityatanygivenradiuscanbedefinedbytheequation3.2-10Ifdu/dtisneglected,atermiDragcoefficientThequantitativeuseofEqs.(3.2-5)to(3.2-10)requiresthatnumericalvaluesbeavailableforthedragcoefficientCD.FigureshowsthedragcoefficientasafunctionofReynoldsnumber.DragcoefficientThequantitatiThedragcurveshowninfigureapplies,however,onlyunderrestrictedconditions.Theparticlemustbeasolidsphere,itmustbefarfromotherparticlesandfromthevesselwallsothattheflowpatternaroundtheparticleisnotdistorted,andtheparticlemustbemovingatitsterminalvelocitywithrespecttothefluid.ThedragcurveshowninfigureWhentheparticleisatthesufficientdistancefromtheboundariesofthecontainerandfromotherparticles,sothatitsfallisnotaffectedbythem,theprocessiscalledfreesettling.Ifthemotionofparticleisimpededbyotherparticles,whichhappedwhentheparticlesareneareachothereventhoughtheymaynotactuallybecolliding,theprocessiscalledhinderedsettling.WhentheparticleisattheIftheparticlesareverysmall,Brownianmovementappears.Thiseffectbecomesappreciableataparticlesizeofabout2-3μmandpredominatesovertheforceofgravitywithaparticlesizeof0.1orless.IftheparticlesareverysTherandommovementoftheparticletendstosuppresstheeffectoftheforceofgravity,sosettlingdoesnotoccur.ApplicationofcentrifugalforcereducestherelativeeffectofBrownianmovement.Therandommovementofthemovementofsphericalparticles
Iftheparticlesarespheresofdiameterdp(3.2-11
)(3.2-12
)AndmovementofsphericalparticleSubstitutionofmandApfromEq(3.2-11
)and(3.2-12
)intoEq(3.2-9)and(3.2-10)gives(3.2-13
)(3.2-13a)andSubstitutionofmandApfTheterminalvelocitiesatthedifferentReynoldsnumberIntheory,stokes’lawisvalidonlywhenReisconsiderablylessthanunity.Eq.(3.2-13
)maybeusedwithsmallerrorforallReynoldsnumberslessthan1.Theterminalvelocitiesatthe
Forgravitysettlingofaspheres,atlowReynoldsnumbers,thedragcoefficientvariesinverselywithRe.(3.2-14
)(3.2-16
)andsubstitutingEq(3.2-14
)intoEq(3.2-13
),givesForgravitysettlingofasp
Equation(3.2-16
)isknownasStokes′law,andappliesforparticleReynoldsnumberslessthan1.0.substitutingEq(3.2-14
)intoEq(3.2-13a),gives(3.2-20
)Equation(3.2-20
)canbeusedtopredictthevelocityofasmallsphereinacentrifugalfield.Equation(3.2-16)isknownaForRe>1000,thedragcoefficientisapproximatelyconstantat0.40to0.45,andlets(3.2-19)so
theequationisCD=0.44ForRe>1000,thedragcoeffEquation(3.2-19)isNewton’lawandappliesonlyforfairlylargeparticlesfallingingases
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 17001.5-2024防偽油墨第5部分:壓敏防偽油墨
- 磁帶錄音機(jī)項目運(yùn)營指導(dǎo)方案
- 真空吸塵器產(chǎn)品供應(yīng)鏈分析
- 沼氣出料機(jī)產(chǎn)品供應(yīng)鏈分析
- 安裝照明設(shè)備行業(yè)市場調(diào)研分析報告
- 測繪儀器產(chǎn)品供應(yīng)鏈分析
- 電子鎖細(xì)分市場深度研究報告
- 垃圾處理行業(yè)營銷策略方案
- 工業(yè)用和商用貨盤的出租行業(yè)營銷策略方案
- 西洋參市場分析及投資價值研究報告
- 反應(yīng)釜驗證方案樣本
- S2-旋挖樁機(jī)安裝拆卸專項方案
- 普通高中物理課程標(biāo)準(zhǔn)解讀
- 成人失禁相關(guān)性皮炎的預(yù)防與護(hù)理-護(hù)理團(tuán)標(biāo)
- 西南師大版二年級下冊三位數(shù)加減混合運(yùn)算200題及答案
- 國外保護(hù)非物質(zhì)文化遺產(chǎn)的現(xiàn)狀
- 瓜子二手車商業(yè)計劃書
- 蒙牛品牌分析報告
- 《桌面應(yīng)急演練》
- 《嬰幼兒視力發(fā)育》課件
- 小學(xué)語文數(shù)字化閱讀教學(xué)設(shè)計
評論
0/150
提交評論