2021-2022學年浙江省嘉興地區(qū)中考數(shù)學押題試卷含解析_第1頁
2021-2022學年浙江省嘉興地區(qū)中考數(shù)學押題試卷含解析_第2頁
2021-2022學年浙江省嘉興地區(qū)中考數(shù)學押題試卷含解析_第3頁
2021-2022學年浙江省嘉興地區(qū)中考數(shù)學押題試卷含解析_第4頁
2021-2022學年浙江省嘉興地區(qū)中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為()A.36 B.12 C.6 D.32.下列計算正確的是A. B. C. D.3.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形4.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間5.過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖正確的為()A. B. C. D.6.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠17.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣18.工信部發(fā)布《中國數(shù)字經(jīng)濟發(fā)展與就業(yè)白皮書(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×1059.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入10.計算4+(﹣2)2×5=()A.﹣16B.16C.20D.2411.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.12.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球實驗:將球攪勻后從中隨機摸出一個,記下顏色,再放回袋中,不斷重復.下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.60114.已知反比例函數(shù)的圖像經(jīng)過點(-2017,2018),當時,函數(shù)值y隨自變量x的值增大而_________.(填“增大”或“減小”)15.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.16.如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____.17.已知:ab=23,則18.計算的結果是_____三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,關于x的方程x2+2x-k=0有兩個不相等的實數(shù)根.(1)求k的取值范圍;(2)若x1,x2是這個方程的兩個實數(shù)根,求的值;(3)根據(jù)(2)的結果你能得出什么結論?20.(6分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.21.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.22.(8分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)23.(8分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.(1)求每件甲種、乙種玩具的進價分別是多少元?(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?24.(10分)某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名.25.(10分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)26.(12分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).27.(12分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖象可得出點B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義以及點B的坐標即可得出結論.

解:設△OAC和△BAD的直角邊長分別為a、b,

則點B的坐標為(a+b,a﹣b).∵點B在反比例函數(shù)的第一象限圖象上,

∴(a+b)×(a﹣b)=a2﹣b2=1.

∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.

故選D.點睛:本題主要考查了反比例函數(shù)系數(shù)k的幾何意義、等腰三角形的性質以及面積公式,解題的關鍵是找出a2﹣b2的值.解決該題型題目時,要設出等腰直角三角形的直角邊并表示出面積,再用其表示出反比例函數(shù)上點的坐標是關鍵.2、B【解析】試題分析:根據(jù)合并同類項的法則,可知,故A不正確;根據(jù)同底數(shù)冪的除法,知,故B正確;根據(jù)冪的乘方,知,故C不正確;根據(jù)完全平方公式,知,故D不正確.故選B.點睛:此題主要考查了整式的混合運算,解題關鍵是靈活應用合并同類項法則,同底數(shù)冪的乘除法法則,冪的乘方,乘法公式進行計算.3、D【解析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.4、C【解析】分析:根據(jù)被開方數(shù)越大算術平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術平方根越大得出1<<5是解題的關鍵,又利用了不等式的性質.5、B【解析】試題解析:選項折疊后都不符合題意,只有選項折疊后兩個剪去三角形與另一個剪去的三角形交于一個頂點,與正方體三個剪去三角形交于一個頂點符合.故選B.6、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.7、A【解析】

直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.8、C【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.9、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分數(shù)量占總數(shù)的百分數(shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.10、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點睛:本題考查有理數(shù)的混合運算,解答本題的關鍵是明確有理數(shù)的混合運算的計算方法.11、D【解析】

當k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質.關鍵是明確系數(shù)與圖象的位置的聯(lián)系.12、D【解析】

分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關鍵是熟練掌握這三種數(shù)的計算方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實驗次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球實驗后發(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點睛】本題考查了利用頻率估計概率,在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.14、增大【解析】

根據(jù)題意,利用待定系數(shù)法解出系數(shù)的符號,再根據(jù)k值的正負確定函數(shù)值的增減性.【詳解】∵反比例函數(shù)的圖像經(jīng)過點(-2017,2018),∴k=-2017×2018<0,∴當x>0時,y隨x的增大而增大.故答案為增大.15、56【解析】

解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.16、﹣1.【解析】試題分析:假設出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分P,Q面積相等.連接AB,OD,根據(jù)兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=S△AOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結論.解:∵扇形OAB的圓心角為90°,扇形半徑為2,∴扇形面積為:=π(cm2),半圓面積為:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,連接AB,OD,∵兩半圓的直徑相等,∴∠AOD=∠BOD=45°,∴S綠色=S△AOD=×2×1=1(cm2),∴陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1(cm2).故答案為﹣1.考點:扇形面積的計算.17、–12【解析】

根據(jù)已知等式設a=2k,b=3k,代入式子可求出答案.【詳解】解:由ab故:a-2bb+2b故答案:-1【點睛】此題主要考查比例的性質,a、b都用k表示是解題的關鍵.18、【解析】【分析】根據(jù)二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)k>-1;(2)2;(3)k>-1時,的值與k無關.【解析】

(1)由題意得該方程的根的判別式大于零,列出不等式解答即可.(2)將要求的代數(shù)式通分相加轉化為含有兩根之和與兩根之積的形式,再根據(jù)根與系數(shù)的關系代數(shù)求值即可.(3)結合(1)和(2)結論可見,k>-1時,的值為定值2,與k無關.【詳解】(1)∵方程有兩個不等實根,∴△>0,即4+4k>0,∴k>-1(2)由根與系數(shù)關系可知x1+x2=-2,x1x2=-k,∴(3)由(1)可知,k>-1時,的值與k無關.【點睛】本題考查了一元二次方程的根的判別式,根與系數(shù)的關系等知識,熟練掌握相關知識點是解答關鍵.20、(1)見解析;(2).【解析】

(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點O是AB的中點,從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點O是AB的中點,∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=【點睛】本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質,等邊三角形的性質,本題屬于中等題型.21、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;

(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質解決問題;

(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數(shù)的綜合應用.解題關鍵點:靈活運用二次函數(shù)性質,運用數(shù)形結合思想.22、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-∠ECD,

即∠BCE=∠DCG.

在△BCE和△DCG中,∴△BCE≌△DCG(SAS),

∴BE=DG.應用:∵四邊形ABCD為菱形,

∴AD∥BC,

∵BE=DG,

∴S△ABE+S△CDE=S△BEC=S△CDG=8,

∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.23、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)4.【解析】試題分析:(1)設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.試題解析:設甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經(jīng)檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),∴y取20,21,22,23,共有4種方案.考點:分式方程的應用;一元一次不等式組的應用.24、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據(jù)A等級的人數(shù)和百分比求出總人數(shù);根據(jù)總人數(shù)和A、B、D三個等級的人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論