版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,當(dāng)時,()A. B. C. D.2.函數(shù)在的圖象大致為()A. B.C. D.3.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標(biāo)原點若,則直線與的斜率之積為()A. B. C. D.4.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱5.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.6.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④7.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.8.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.9.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.10.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.11.若數(shù)列滿足且,則使的的值為()A. B. C. D.12.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.曲線在點處的切線方程為________.15.已知,滿足約束條件,則的最大值為________.16.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對于,使得成立,求的取值范圍.19.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時,求與的交點的極坐標(biāo);(2)直線與曲線交于,兩點,線段中點為,求的值.21.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的單調(diào)性;(2)若,當(dāng)時,函數(shù),求函數(shù)的最小值.22.(10分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】
根據(jù)向量的坐標(biāo)運算,求出,,即可求解.【題目詳解】,.故選:A.【答案點睛】本題考查向量的坐標(biāo)運算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.2.C【答案解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【題目詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當(dāng)時,,所以排除A選項;當(dāng)時,,排除D選項;綜上可知,C為正確選項,故選:C.【答案點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.3.A【答案解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【題目詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,,再求切線PA,PB方程,求點P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標(biāo),計算量就大一些.4.C【答案解析】
依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【題目詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【答案點睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.5.C【答案解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實部大于零,虛部等于零,即可得到答案.【題目詳解】因為為正實數(shù),所以且,解得.故選:C【答案點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.6.D【答案解析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【題目詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【答案點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.7.C【答案解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【題目詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【答案點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.8.D【答案解析】
根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【題目詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【答案點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.9.D【答案解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的公式計算得答案.【題目詳解】解:,則.故選:D.【答案點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.10.D【答案解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【題目詳解】由題設(shè)有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【答案點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關(guān)的問題,本題屬于基礎(chǔ)題.11.C【答案解析】因為,所以是等差數(shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.12.D【答案解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【題目詳解】,,.故答案為:.【答案點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎(chǔ)題.14.【答案解析】
求導(dǎo),得到和,利用點斜式即可求得結(jié)果.【題目詳解】由于,,所以,由點斜式可得切線方程為.故答案為:.【答案點睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,屬基礎(chǔ)題.15.【答案解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點與原點距離的平方,利用圖象即可求解.【題目詳解】可行域如圖所示,易知當(dāng),時,的最大值為.故答案為:9.【答案點睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.16.【答案解析】
將不等式兩邊同時平方進行變形,然后得到對應(yīng)不等式組,對的取值進行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【題目詳解】因為,所以,所以,所以,所以或,當(dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【答案點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標(biāo)方程為;(Ⅱ)16.【答案解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【題目詳解】(Ⅰ)由題意:曲線的直角坐標(biāo)方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因為直線的直角坐標(biāo)方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標(biāo)方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點為,,,,所以橢圓的內(nèi)接矩形的周長為:,所以當(dāng)時,即時,橢圓的內(nèi)接矩形的周長取得最大值16.【答案點睛】本題考查了曲線的參數(shù)方程,極坐標(biāo)方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.18.(1)當(dāng)時,在上增;當(dāng)時,在上減,在上增(2)【答案解析】
(1)求出導(dǎo)函數(shù),分類討論確定的正負(fù),確定單調(diào)區(qū)間;(2)題意說明,利用導(dǎo)數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論.【題目詳解】解:(1)定義域為當(dāng)時,即在上增;當(dāng)時,即得得綜上所述,當(dāng)時,在上增;當(dāng)時,在上減,在上增(2)由題在上增由(1)當(dāng)時,在上增,所以此時無最小值;當(dāng)時,在上減,在上增,即,解得綜上【答案點睛】本題考查用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查不等式恒成立問題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想,本題恒成立問題轉(zhuǎn)化為,求出兩函數(shù)的最小值后可得結(jié)論.19.(1);(2).【答案解析】分析:(1)在式子中運用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時等號成立.∴.∴面積的最大值為.點睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.20.(1),;(2)【答案解析】
(1)依題意可知,直線的極坐標(biāo)方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【題目詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時,聯(lián)立解得交點,當(dāng)時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當(dāng)時,無交點;綜上,曲線與直線的點極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【答案點睛】本題考查直線與曲線交點的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.21.(1)見解析(2)的最小值為【答案解析】
(1)由題可得函數(shù)的定義域為,,當(dāng)時,,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在上單調(diào)遞增.(2)方法一:當(dāng)時,,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時取等號.當(dāng)時,設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當(dāng)時,;當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版文化藝術(shù)活動專用服裝租賃合同范本3篇
- 2024期貨市場委托交易顧問服務(wù)合同范本3篇
- 2024校園景觀設(shè)計與物業(yè)管理服務(wù)合同
- 2024年餐飲企業(yè)食堂加盟經(jīng)營合同3篇
- 2025年度生態(tài)園區(qū)安全隱患樹木排查與緊急處理合同3篇
- 2024年裝修施工包工包料協(xié)議樣本版
- 2025年度冷鏈物流一體化解決方案采購合同范本3篇
- 第八章《浮力》單元測試(含解析)2024-2025學(xué)年魯科版物理八年級下學(xué)期
- 2024招投標(biāo)工程廉潔服務(wù)承諾協(xié)議3篇
- 2024版廣告宣傳服務(wù)銷售合同
- GB/T 39733-2024再生鋼鐵原料
- 第二章 粉體制備
- 《工業(yè)機器人現(xiàn)場編程》課件-任務(wù)3.涂膠機器人工作站
- 預(yù)應(yīng)力空心板計算
- 2024版珠寶鑒定技師勞動合同范本3篇
- 中國能源展望2060(2025年版)
- 2024年年第三方檢測行業(yè)分析報告及未來五至十年行業(yè)發(fā)展報告
- 李四光《看看我們的地球》原文閱讀
- GA/T 1740.2-2024旅游景區(qū)安全防范要求第2部分:湖泊型
- 華為公司戰(zhàn)略發(fā)展規(guī)劃匯報
- 2025年社區(qū)工作者考試試題庫及答案
評論
0/150
提交評論