螺旋槳葉剖面優(yōu)化設計比較研究(英文)_第1頁
螺旋槳葉剖面優(yōu)化設計比較研究(英文)_第2頁
螺旋槳葉剖面優(yōu)化設計比較研究(英文)_第3頁
螺旋槳葉剖面優(yōu)化設計比較研究(英文)_第4頁
螺旋槳葉剖面優(yōu)化設計比較研究(英文)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

船舶力學

JournalofShipMechanicsArticleID:1007-7294(2011)12-1344-09AComparativeInvestigationonOptimizationof

PropellerBladeSectionDesignZENGZhi-bo(ChinaShipScientificResearchCenter,Wuxi214082,China)Abstract:Amethodofbladesectiondesignoptimizationformarinepropellerswithmaximumcavitationinceptionspeediscomparativelyinvestigated.Thedesignoptimizationmethodconsistsofthreeparts:parametricrepresentationofsections,cavitationbucketpredictionandGeneticAlgorithm(GA)usedtosearchtheoptimizedfoilsprovidingexcellentcavitationinceptionperformance.TheEpplermethod,whichdescribesaprofilebytenparameters,waseffectivelyutilizedforpropellerbladesectiondesignoptimizationformaximuminceptionspeed.BesidesdesignparametersinEpplermethod,parametricrepresentationofsectionscanbealsorealizedbycontrol[x)intsofB-splinecurve.Acomparativeinvestigationofbladesectiondesignoptimizationonthesetwoparametricrepresentationsispresented,someconclusionsaredrawn.Keywords:bladesectiondesignoptimization;geneticalgorithm;B-spline;Epplermethod;comparativeinvestigationCLCnumber:U661.313Documentcode:AIntroductionCavitationisakeysubjectofshippropellerdesign.Inmanycases,suchasfornavalships,ilisnecessarytodelaycavitationinceptionuptothehighestpossibleshipspeed.Traditionallythemarginagainstcavitationisincreasedbyincreasingthebladearea.However,itleadstothinandwidesections,whichreducestheabilityofcavitationfreewhenitoperatesatangleofattackwithtimedependentvaryingbecauseofnon-uniformwake.Furthermore,increasingbladeareareducespropellerefficiency.Forimprovingthecavitatingperformanceoffoilsection,Epplermethod"】wasprovedtobesignificantlysuccessfultoenlargecavitationbucketofsectionsandithadbeenverifiedbyexperiments121.Inrecentyears,morepracticaldesignmethodsofsectionsbasedonoptimizationhavebeendeveloped"』ZengandKuiper151developedanoptimizationtechnique,usingageneticalgorithmtointegratetheprogramofEppler-Shen,makesEpplerfoildesignmethodmoreaccessibleandconvenient.Inthispaper,theoptimizationtechnique151wasadoptedtocomparativelyinvestigateeffectsofdifferentparametricrepresentationsonoptimizedsectionsofpropeller.Twoparametricrepresentations:designparametersinEpplermethod,coordinatesofcontrolpointsofB-splineReceiveddate:2011-08-23Biography:ZENGZhi-bo(1980-),male,engineerofCSSRC.

curvewereinvestigated.Theoptimizationstrategyappliedgeneticalgorithmswhichwereprocessedbymeansofgeneticoperators,includingcrossover,mutationandselection.Theobjectivesderivefromacavitationbucketagainstanoperatingcurveofasectionofapropeller,whichconsistofpressuresheetcavitationmargin,suctionsheetcavitationmarginandsuctionbubblecavitationmargin.Theevaluationofthefitnessofobjectiveadoptedatwodimensionalpanelcode.Foraspecificoperatingcurveofabladesection,acomparativeinvestigationonthetwoparametricrepresentationsinoptimizationhasbeencarriedout.Theanalysiswaspresentedandsomeconclusionsweredrawn.Thegeometricaldifferencesamongtheoptimizedfoilsbasedontwoparametricrepresentationstellthatthesignificanceofeachparameterofeachrepresentationneedstobestudiedfurther.MethodologyMethodologyofsectiondesignoptimizationtodelaycavitationinceptionisgenerallycomposedofthreeparts:thefirstisparametricrepresentationofgeometryofsections,thesecondispredictionofcavitationbucketoffoilsandthethirdisoptimizationtool.Bladesectionparameterizationisadifficultprobleminoptimization,whichsignificantlyaffectsoptimizedresults.Anidealparametricrepresentationshouldbesimpleandcompletelyextractcharacteristicsofbladesectioninitsparametricspace.TwodimensionalpanelmethodisemployedtopredictthepressuredistributionandtheOptimiutionBoxOptimiutionBoxOptimiutionBoxParameterBoxFunctionBoxFig.lTheflowchartofsectiondesignoptimizationcavitationbucketonafoil.Cavitationbucketisdefinedbytheminimumpressureonthefoilversusangleofattackorliftcoefficient.SoafterthecalculationofthepressuredistributionsonafoilataseriesofOptimiutionBoxParameterBoxFunctionBoxFig.lTheflowchartofsectiondesignoptimizationTheoptimizationwasrealizedwithgeneticalgorithms,availableundertheiSIGHT9.0environment,aproductfromEngineousSoftware.Thesectiondesignoptimizationissetupbyintegratingaparametricrepresentation,atwodimensionalpanelmethodandanoptimizationtool.Fig.1showstheflowchart.ParametericrepresentationsAsmentionedabove,bladesectionparameterizationisaworthystudyingproblemrelatedtoaspecificoptimizationobject.Twomethodswereinvestigatedinthepresentstudy.B-splineLettingP(t)bethepositionvectoralongthecurveasafunctionoftheparameteraB-splinecurveisgivenby/l+lPU)二£bM(£)虹蘆心皿,2WkWgl⑴i=lwherearethepositionvectorsofthen+1verticesofthecontrolpolygon,andNikarethenormalizedB-splinebasisfunctions.Differenttypesofcontrol'handles'areusedtoinfluencetheshapeofB-splinecurves,inwhichchanging/adjustingpositionofthecontrolpolygonverticesisthemostpracticalandsignificantone.Asanusualway,asectionofpropellerbladeisconsideredasasuperpositionofathicknessdistributionandacamberdistribution.Inordertomaketwocurvesreflectpossiblecharacteristicsofsectionsinoptimization,thecontrolpointsofB-splineshouldbeselectedreasonably.ThecontrolpointsforthicknessandcambercanbeselectedasinFig.2andFig.3,andthecoordinatesofthemareshowninTab.landTab.2.Thethicknessisrepresentedby9controlpointsand8parameterswithtwopointscorrespondingtotheleadingedgeandtrailingedgebeingfixed:(xt,ytvyt4,yfmax,yt5,yf6).Thecamberisrepresentedby8controlpointsand7parameters:(xf,yfi,泌,yfy)/薄,yf),Sothereare15parametersintotaltorepresentasectioninB-splineparametricrepresentationmethod.Fig.2ThecontrolpointstorepresentthicknessFig.3ThecontrolpointstorepresentcamberdistributiondistributionTab.lThecontrolpointscoordinatesforthicknessdistributionX00.0IxfOAxt0.25心0.5xzxt(\+2xt)/3(2+以)/31y0yhyhytAyGyt60Tab.2ThecontrolpointscoordinatesforcamberdistributionX00.0"0.15V0.25xf0.5xfxf0.5(1+礦)1y0yf\xfiyfi寸4yfgyfs0EpplermethodTheprogramofEppler-Shen[l)fordesigningasectioncanbeconsideredtodescribeasectionbytenparametersasfollows地巾i,a},a2.?3,ar巾妙a4,a5,u,k

when04Fig.4SegmentationofthesectiongeometryFig.4issegmentationofthesectiongeometryandshowsparametersoneachsegment.Inthefigure,from巾州to巾】isthemainpressureregionanda}isthecorrespondingangleofattackforconstantpressuredistributioninthisregion,where(f)PRisthelocationofthebeginningoftherecoveryandfixedat51degrees,whichisthesamevalueasusedbyKuiperandJessup161;From巾ito巾?,巾210巾3and</)3to(j)4arethesheetcavitationsuppressionregions,inwhich(f)2iscalculatedintheprogramanda29anda4arethecorrespondinganglesofattackintheseregions;a5correspondstotheregionfrom如to-</>5,inwhich如determinestheclosureregionatthetrailingedgeandfixedat24degrees;Thesuctionpressurerecoveryregionisonthesuctionsidefrom+(/>5to巾地;uandkareusedtocontrolthepressuredistributiononwhen04Fig.4SegmentationofthesectiongeometryComparativeinvestigationAcomparativeinvestigationontheeffectsoftwoparametricrepresentationmethods,i.e.B-splinemethod,andEpplermethodontheoptimizedresultsiscarriedout.Eachoptimizationhasitsownparametricrepresentationbutusingthesamepanelmethodforproducingcavitationbucketandthesameoptimizationtool.Anoperatingcurveofthesectionin0.8RofapropellerworkingbehindDTMB5415151wasadoptedasexampletofindtheobjectives.Fig.5givestheoperatingcurveandabucketof+a=0.8sectionwithamaximumthickness0.035NACA66mod+a=0.8sectionwithamaximumthickness0.035andthesectionisshowninFigs.13~15,itcanbeseenthatthebucketcannotenvelopetheoperatingcurve+a=0.8sectionwithamaximumthickness0.0354.1OptimizationproblemTheobjectiveoftheoptimizationistodesignasectionwithacavitationbucket,whichenvelopstheoperatingcurveinFig.6.Theoperatingcurvecanbecalculatedbyunsteadypanelcode.TheobjectiveconsistsofdClvdClHanddacThevaluedC”istheverticaldistancebetweenthecavitationbucketandthelowestpointoftheoperatingcurve,andgivesthemarginagainstpressuresidesheetcavitation.ThevaluedCLBistheverticaldistancebetweenthecavitationbucketandthehighestpointoftheoperatingcurve,andgivesthemarginagainstsuctionsidesheetcavitation.Similarlythevalueda(:comesfromtheminimumhorizontaldistancebetweentheoperatingcurveandthebucketanditdepictsthemarginagainstsuctionsidebubblecavitation.Theoptimizationproblemisformedwithaconstraintofmaximumthicknessoffoilsasfollows,Max.dCIA(X),dC^(X)9dcrc(X)XeC(2)whereXiscombinationofparameters,Cisaconstraintspaceofparameters,T臨isthelimitofmaximumthicknessofsection.Therangeofeveryparameterineachparameterrepresentationmethodshouldbefirstlyspecified,whichhassomeeffectsonthedesignresults.TheconstraintofmaximumthicknessTIimissetas0.04.Inordertooptimizedesignvariablestheobjectivesaretranslatedintoonefitnessparameterwithsuitableweightforeachofthedesignobjectives.AGeneticAlgorithm(GA)optimizationmethodisusedtogenerateanewbetterpopulation.Optimizationsareprocessedbymeansofgeneticoperators,includingcrossover,mutationandselection.Thebestsolutionforamulti-objectiveoptimizationproblemisoftenatrade-off,soaParetooptimumisusedinsteadoffindingonlyonesolution.Thereisaseriesoffeasibleandnon-dominatedsolutionsintheParetoanddesignerscanselectasuitableoneaccordingtopracticalrequirements.ThedesignoptimizationisexecutediniSIGHT,thefeaturesofoptimizationtool,geneticalgorithm,areselectedasfollows:populationsizeis20,maximumgenerationsarespecifiedas25,crossovertypeistwopointsandcrossoverrateis0.4,mutationrateissetas0.1.Objectiveisdefinedas,Objective=-(WdCuxdC^+Wdc^^LB^c)⑶withtheweightofdC”,dclBofdCIRandofdac.SotheoptimizationbecomesaproblemsearchingminimumvalueofObjective.Inthepresentoptimizationproblem,(4)isselected.ComparisonontheoptimizationprocessTheoptimizationprocesseswiththetwoparametricrepresentationmethodsareshowninFig.7.ThefiguregivesthedevelopmentofbestObjectiveversusgenerations.ItcanbeseenthateachbestObjectiveisimprovedwiththeincreasingofgenerations,howevertheconvergenceissignificantlydifferent.Epplermethodcanarriveatminimumvalueafter5generationsbutB-splinemethodshowsagraduallyimprovedprocessandreachestheminimumObjective

in20generations.RegardingtheminimumObjective,B-sp]inemethodandEpplermethodhavethesamevaluewhichiscloseto-0.1.Fig.6AtypicaloperatingcurveandcavitationFig.6AtypicaloperatingcurveandcavitationFig.7ComparisonoftheoptimizationprocessbetweenbucketB-splinemethodandEpplermethod4.3ComparisonontheoptimizationresultTheParetodistributionisusedtodemonstratetheoptimizationdesignresultsinthemulti-objectiveproblem.Figs.8~9giverespectivelytheParetosineachmethod.TherearefourParetos:dC”anddac;dClAanddClB;dClBanddac\da(.andObjective.Inthesefigurestherearealltheindividualsineverygenerationduringtheprocessofoptimizationinwhichthedarkbluedotsarethefinaloptimumindividuals.ForObjectiveinthetwomethods,itcanbeseenfromthedarkdotsthatObjectiveisimprovedandtheminimumvaluesareinthesamelevel;Fordac,EpplermethodhasthehigherlevelthanB-splinemethodandthevalueinbothmethodsislargerthan0.FordClAanddCLBJtwomethodsgeneratevaluesdistributedonthebothsidesof0,andB-splinehaslargerrange.dCIAanddCIRhavetheobviouslycon-?CUraet?ri>ticPoiaU(A.B.0(WsifnedBvditt??..4>.?.??006-.??ooe-.?...?.Soot-?????.o1004-?■a002-002-3-00020040002DCLBDCLA004-.,006-?i.002-%.?.?也0-???.?ow-?002-<11■F0050-002?1■0ObjectiveDCLA??..4>.?.??006-.??ooe-.?...???..4>.?.??006-.??ooe-.?...?.Soot-?????.o1004-?■a002-002-3-00020040002DCLBDCLA004-.,006-?i.002-%.?.?也0-???.?ow-?002-<11■F0050-002?1■0ObjectiveDCLAFig.8ThePareto:Thedistributionintheobjectivespaceofalltheindividuals(B-splinemethod)0901DCLB4*010DCLA092ow-??001-DSigmaCo??—4__L-9.80006-g0-06?■085?C'*?oi-ooeQOtObjects■0010001DCLA002Fig.9ThePareto:Thedistributionintheobjectivespaceofalltheindividuals(Epplermethod)Inordertodistinguishthedifferencebetweenthesetwomethods,thecomparisonsonthethreecavitationmarginsinthreepracticalcasesweresinglycarriedout.TheresultsareshowninTab.3.Tab.3TheresultsofthecomparisonsdC”djBsplineEpplerBsplineEpplerBsplineEpplerBsplineEppler0.0080.0070.0130.0140.0650.0740.03350.03880.0130.0130.0190.0170.06150.07120.03330.03920.0180.0160.010.0090.0620.0740.03330.0393Case1:WhendCIAN0.007anddCLBN0.013,dacis0.065optimizedbyB-splinemethodand0.074byEpplermethod,whichshowsEpplermethodgives13.8%bettersuctionbubblecavitationmarginthanB-splinemethodduetoconstantpressuredistributiononthemainpressureregion.ThecomparisonofthetwobucketsweredepictedinFig.10.ThecorrespondingmaximumthicknessofEpplermethodis0.0388largerthanthatofB-splinemethod0.0335.0.)8o.0.080.060.040.02000.40.5a0.6Fig.10ThecomparisononsuctionbubblecavitationmarginCase2:WhendCIA20.013anddac0.06,B-splinemethodgeneratesdCLB=0.019andEpplermethodgeneratesdCIR=0.017whichisslightlylower.Fig.l10.)8o.0.080.060.040.02000.40.5a0.6Fig.10ThecomparisononsuctionbubblecavitationmarginFig.l1ThecomparisononsuctionsheetcavitationmarginFig.12ThecomparisononpressuresheetcavitationmarginCase3:WhendCIR>0.09andda0.06^dClAoptimizedbythetwomethodsarealsoverycloseandthebucketsareshowninFig.l1ThecomparisononsuctionsheetcavitationmarginFig.12ThecomparisononpressuresheetcavitationmarginInsummary,EpplermethodandB-splinemethodallcanoptimizesectionswithconsiderablebuckets.Epplermethodcanoptimizeasectionwithbetterbubblecavitationmargin,andslightlybettersheetcavitationmarginscanbeobtainedwithB-splinemethod.ThemaximumthicknessofB-splinemethodislessthanthatinEpplermethodThesectionsstructuredbyparametricrepresentationintheabovecasesareshowninFigs.13~15.ThemaximumthicknessofthemismovedtowardstheleadingedgeforincreasingthemarginagainstsheetcavitationandthemaximumcamberismovedtowardsthetrailingedgeformovingmoreloadstowardsthetrailingedgeincomparisonwiththeNACA66mod+a=0.8sectionalsoshowninthesefigures.o0.03>0.020.010.00-0.01-0.0290.03R0.020.010.00-0.01Fig.14Theoptimizedsections(Case2)-0.02Fig.15Theoptimizedsections(Case3)Thegeometricaldifferenceso0.03>0.020.010.00-0.01-0.0290.03R0.020.010.00-0.01Fig.14Theoptimizedsections(Case2)-0.02Fig.15Theoptimizedsections(Case3)ConclusionsAcomparativeinvestigationontheeffectsoftwoparametricrepresentationmethods:B-splinemethodandEpplermethodinthesectiondesignoptimizationmethodwascarriedout,someconclusionscanbedrawnasfollows:Thedesignoptimizationmethodwiththesetwoparametricrepresentationmethodscanallworkoutoptimumsections,andcanbe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論