版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Lecture
8:
Generative
Adversarial
Network2November
27,
2019
Artificial
IntelligenceGenerative
Adversarial
Networks
?
Genarative
?
Learn
a
generative
model
?
Adversarial
?
Trained
in
an
adversarial
setting
?
Networks
?
Use
Deep
Neural
NetworksArtificial
Intelligence3Generative
Models
November
27,
2019Artificial
Intelligence4Generative
Models
November
27,
2019Artificial
Intelligence5Why
Generative
Models?
?
Discriminative
models
?
Given
a
image
X,
predict
a
label
Y
?
Estimates
P(Y|X)
?
Discriminative
models
limitations:
?
Can’t
model
P(X)
?
Can’t
generate
new
images
?
Generative
models
?
Can
model
P(X)
?
Can
generate
new
images
November
27,
2019Artificial
Intelligence6Magic
of
GANs
November
27,
2019Artificial
Intelligence7Magic
of
GANs
?
Which
one
is
Computer
generated?
November
27,
2019Artificial
Intelligence8Magic
of
GANs
November
27,
2019Artificial
Intelligence9GAN’s
Architecture
November
27,
2019Artificial
Intelligence10November
27,
2019Adversarial
Training?Adversarial
Samples:????We
can
generate
adversarial
samples
to
fool
a
discriminative
modelWe
can
use
those
adversarial
samples
to
make
models
robustWe
then
require
more
effort
to
generate
adversarial
samplesRepeat
this
and
we
get
better
discriminative
model?GANs
extend
that
idea
to
generative
models:????Generator:
generate
fake
samples,
tries
to
fool
the
DiscriminatorDiscriminator:
tries
to
distinguish
between
real
and
fake
samplesTrain
them
against
each
otherRepeat
this
and
we
get
better
Generator
and
Discriminator
Artificial
Intelligence11Training
Discriminator
November
27,
2019
Artificial
Intelligence12Training
Generator
November
27,
2019
Artificial
Intelligence13Mathematical
formulation
November
27,
2019
Artificial
Intelligence14Mathematical
formulation
November
27,
2019
Artificial
Intelligence15Mathematical
formulation
November
27,
201916November
27,
2019
Artificial
IntelligenceMathematical
formulation
Artificial
Intelligence17Advantages
of
GANs
November
27,
2019
Artificial
Intelligence18Problems
with
GANs
November
27,
2019
Artificial
Intelligence19Problems
with
GANs
November
27,
2019Artificial
Intelligence20November
27,
2019Formulation?Deep
Learning
models
(in
general)
involve
a
single
player????The
player
tries
to
maximize
its
reward
(minimize
its
loss).Use
SGD
(with
Backpropagation)
to
find
the
optimal
parameters.SGD
has
convergence
guarantees
(under
certain
conditions).Problem:
With
non-convexity,
we
might
converge
to
local
optima.Artificial
Intelligence21November
27,
2019Formulation?GANs
instead
involve
two
(or
more)
players????
Discriminator
is
trying
to
maximize
its
reward.
Generator
is
trying
to
minimize
Discriminator’s
reward.SGD
was
not
designed
to
find
the
Nash
equilibrium
of
a
game.Problem:
We
might
not
converge
to
the
Nash
equilibrium
at
all.22November
27,
2019
Artificial
IntelligenceNon-Convergence
Artificial
Intelligence23Problems
with
GANs
November
27,
2019
Artificial
Intelligence24Mode-Collapse
November
27,
2019
Artificial
Intelligence25Some
Real
Examples
November
27,
2019
Artificial
Intelligence26
Some
Solutions?
Mini-Batch
GANs?
Supervision
with
labels?
Some
recent
attempts
:
?
Unrolled
GANs
?
W-GANs
November
27,
2019
Artificial
Intelligence27
Basic
(Heuristic)
Solutions?
Mini-Batch
GANs?
Supervision
with
labels
November
27,
201928November
27,
2019
Artificial
IntelligenceHow
to
reward
sample
diversity??At
Mode
Collapse,??Generator
produces
good
samples,
but
a
very
few
of
them.Thus,
Discriminator
can’t
tag
them
as
fake.?To
address
this
problem,?Let
the
Discriminator
know
about
this
edge-case.?More
formally,??Let
the
Discriminator
look
at
the
entire
batch
instead
of
single
examplesIf
there
is
lack
of
diversity,
it
will
mark
the
examples
as
fake?Thus,?Generator
will
be
forced
to
produce
diverse
samples.Artificial
Intelligence29November
27,
2019Mini-Batch
GANs?Extract
features
that
capture
diversity
in
the
mini-batch?For
e.g.
L2
norm
of
the
difference
between
all
pairs
from
the
batch??Feed
those
features
to
the
discriminator
along
with
the
imageFeature
values
will
differ
b/w
diverse
and
non-diverse
batches?Thus,
Discriminator
will
rely
on
those
features
for
classification?This
in
turn,??Will
force
the
Generator
to
match
those
feature
values
with
the
real
dataWill
generate
diverse
batches
Artificial
Intelligence30
Basic
(Heuristic)
Solutions?
Mini-Batch
GANs?
Supervision
with
labels
November
27,
201931November
27,
2019
Artificial
IntelligenceSupervision
with
Labels32November
27,
2019
Artificial
IntelligenceAlternate
view
of
GANs33November
27,
2019
Artificial
IntelligenceAlternate
view
of
GANs
(Contd.)34November
27,
2019
Artificial
IntelligenceEnergy-Based
GANs35November
27,
2019
Artificial
IntelligenceExamples36November
27,
2019
Artificial
IntelligenceExamples37November
27,
2019
Artificial
IntelligenceExamples38November
27,
2019
Artificial
IntelligenceExamples39November
27,
2019
Artificial
IntelligenceHow
to
reward
Disentanglement?Artificial
Intelligence40November
27,
2019Recap:
Mutual
Information??Mutual
Information
captures
the
mutual
dependence
between
two
variablesMutual
information
between
two
variables
??,
??
is
defined
as:Artificial
Intelligence41November
27,
2019InfoGAN??We
want
to
maximize
the
mutual
information
??
between
??
and
??
=
??(??,
??)Incorporate
in
the
value
function
of
the
minimax
game.
Artificial
Intelligence42Conditional
GANs
November
27,
2019Artificial
Intelligence43November
27,
2019Conditional
GANs??Simple
modification
to
the
originalGAN
framework
that
conditions
themodel
on
additional
information
forbetter
multi-modal
learning.Lends
to
many
practicalapplications
of
GANs
when
wehave
explicit
supervision
available.
Artificial
Intelligence44Conditional
GANs
November
27,
2019Artificial
Intelligence45November
27,
2019Coupled
GAN???Learning
a
joint
distribution
of
multi-domain
images.Using
GANs
to
learn
the
joint
distribution
with
samples
drawn
from
the
marginaldistributions.Direct
applications
in
domain
adaptation
and
image
translation.
Artificial
Intelligence46Coupled
GAN
November
27,
2019
Artificial
Intelligence47Coupled
GAN
November
27,
201948November
27,
2019
Artificial
IntelligenceApplications49November
27,
2019
Artificial
IntelligenceApplications
Artificial
Intelligence50Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence51Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence52Deep
Convolution
GANs
November
27,
2019
Artificial
Intelligence53DCGAN(bedroom)
November
27,
2019
Artificial
Intelligence54Image-to-ImageTran
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 太陽(yáng)能利用與光伏儀器考核試卷
- 衛(wèi)浴產(chǎn)品設(shè)計(jì)人體工程學(xué)應(yīng)用考核試卷
- 保險(xiǎn)公估市場(chǎng)競(jìng)爭(zhēng)與策略考核試卷
- 樂(lè)器品牌故事挖掘與傳播考核試卷
- 直流vm可逆調(diào)速系統(tǒng)課程設(shè)計(jì)
- 簡(jiǎn)易時(shí)鐘課程設(shè)計(jì)
- 二零二五年擔(dān)保公司項(xiàng)目法律意見書(影視娛樂(lè)行業(yè))3篇
- 選礦廠設(shè)計(jì)課程設(shè)計(jì)
- 問(wèn)卷星微課程設(shè)計(jì)
- 英語(yǔ)詞匯課程設(shè)計(jì)
- GB/T 24478-2023電梯曳引機(jī)
- 油田酸化工藝技術(shù)
- 食堂經(jīng)營(yíng)方案(技術(shù)標(biāo))
- 代收實(shí)收資本三方協(xié)議范本
- 人教版八年級(jí)英語(yǔ)下冊(cè)全冊(cè)課件【完整版】
- 乒乓球比賽表格
- 商務(wù)接待表格
- 腸梗阻導(dǎo)管治療
- word小報(bào)模板:優(yōu)美企業(yè)報(bào)刊報(bào)紙排版設(shè)計(jì)
- 漢語(yǔ)教學(xué) 《成功之路+進(jìn)步篇+2》第17課課件
- 三十頌之格助詞【精品課件】-A3演示文稿設(shè)計(jì)與制作【微能力認(rèn)證優(yōu)秀作業(yè)】
評(píng)論
0/150
提交評(píng)論