GCT輔導(dǎo)線性代數(shù)_第1頁
GCT輔導(dǎo)線性代數(shù)_第2頁
GCT輔導(dǎo)線性代數(shù)_第3頁
GCT輔導(dǎo)線性代數(shù)_第4頁
GCT輔導(dǎo)線性代數(shù)_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022/12/17考試要求與試卷分析第一部分

算術(shù)第二部分初等代數(shù)第三部分幾何與三角第四部分微積分第五部分線性代數(shù)2022/12/17第11章連續(xù)與極限1.函數(shù)定義(第三章已給出)2.函數(shù)特性(單調(diào)性、周期性、奇偶性、有界性)3.復(fù)合函數(shù)

11.1一元函數(shù)11.2數(shù)列極限1.定義2.性質(zhì)2022/12/17第11章連續(xù)與極限1.定義及關(guān)系2.無窮小量性質(zhì)11.3函數(shù)極限定義及性質(zhì)11.4無窮小量和無窮大量2022/12/17第11章連續(xù)與極限11.5函數(shù)連續(xù)性1.定義2.函數(shù)間斷點及分類

運算法則

4.閉區(qū)間連續(xù)函數(shù)性質(zhì)定義(1)有界(2)最值存在(3)介值存在(4)零點定理重點:會判斷間斷點的類型;利用連續(xù)性求函數(shù)中參數(shù);利用零點定理判斷方程根及所在區(qū)間。典型例題練習(xí)2022/12/17第12章導(dǎo)數(shù)(微分)12.1導(dǎo)數(shù)的定義12.2導(dǎo)數(shù)公式及求導(dǎo)法則12.3高階導(dǎo)數(shù)12.4微分12.5中值定理2022/12/17第12章導(dǎo)數(shù)(微分)12.6洛必達(dá)法則12.7函數(shù)單調(diào)性、極值(考試重點內(nèi)容)12.8函數(shù)的最大值、最小值問題(考試重點內(nèi)容)12.9函數(shù)的凸凹、拐點及漸進(jìn)線典型題2022/12/17第13章一元函數(shù)積分學(xué)13.1不定積分的概念和簡單計算1.定義2.公式

性質(zhì)13.2.不定積分的計算方法1.第一類換元法(湊微分)2.第二類換元法2022/12/17分步積分法關(guān)鍵在于正確選擇第13章一元函數(shù)積分學(xué)13.3定積分的概念及性質(zhì)1.定積分:I與

有關(guān),與積分變量無關(guān),與分割及

的取值無關(guān)。

2022/12/17第13章一元函數(shù)積分學(xué)重點:幾何意義表示由x軸及

圍成的曲邊梯形面積。

2.性質(zhì)13.4微積分基本公式,定積分計算牛頓—萊布尼茨公式

2022/12/17第13章一元函數(shù)積分學(xué)13.5定積分應(yīng)用1.平面圖形面積:

注意:要善于根據(jù)不同情形,采用對不同變量積分,有時對變量y積分可能更簡單的求出曲線圖形面積。2.旋轉(zhuǎn)體體積及x軸繞x軸旋轉(zhuǎn)一周:

及y軸繞y軸旋轉(zhuǎn)一周:

2022/12/17第13章一元函數(shù)積分學(xué)3.平行截面積已知的立體體積4.平面弧長垂直于x軸的平面截立體

所得截面為

則體積4.平面弧長則典型例題與練習(xí)2022/12/17第14章行列式1.定義14.1行列式2.性質(zhì)某行為0則D=0;互換互行變號;常數(shù)因子可提到行列式符號外;兩行對應(yīng)成比例,行列式等于0。3.幾個特殊的行列式(1)對角(2)上三角(3)下三角2022/12/17第14章行列式14.2行列式的計算(1)利用降階方法(2)利用性質(zhì)變換或幾種特殊行列式(3)迭代;找出與、的關(guān)系。重點:利用定義及性質(zhì)能迅速求出行列式。例題與練習(xí)2022/12/17第15章矩陣

15.1矩陣運算及性質(zhì)

由nm個數(shù)排成m行n列的矩形數(shù)表

稱為mn矩陣A=B:(1)A、B必須同型(2)(i=1,2,…..n,j=1,2….m)2022/12/1715.2矩陣運算

(1)A+B=B+A(2)(A+B)+C=A+(B+C)(3)A+0=A(4)-A=(aij)(5)AB=C(cij)(6)乘法

15.3可逆矩陣練習(xí)2022/12/17第16章向量16.1向量的概念

1、定義

2、線性運算16.2向量的線性相關(guān)

1、向量的線性組合與線性表出

2、線性相關(guān)與線性無關(guān)16.3

向量組的秩例題與練習(xí)2022/12/17第17章線性方程組17.1

線性方程組的概念17.2齊次線性方程組基礎(chǔ)解系:同一線性方程組的基礎(chǔ)解系不唯一,但等價,可用初等變換法求基礎(chǔ)解系。2022/12/1717.3非齊次線性方程組Ax=b上述方程的解={Ax=b的一個特解}

+{Ax=0的基礎(chǔ)解系}例題與練習(xí)第17章線性方程組2022/12/17第18章特征矩陣與特征向量18.1特征值與特征向量的概念1、定義設(shè)A為n階矩陣,若及非零n維列向量x,s.t,則是A的特征值,x是屬于特征值的特征向量。2、計算,特征多項式計算N階矩陣A的特征多項式在復(fù)數(shù)域有n個根(i=1,2…n)的非零解是屬于特征值的特征向量。3、特征向量及性質(zhì)2022/12/1718.2矩陣相似對角化問題(重點)若存在矩陣P可逆,使得則A~B

若A~B則矩陣A,B有相同的特征多項式,特征值,相同的行列式

※矩陣A是n階方陣,則A可對角化的充要條件是A有n個線性無關(guān)的特征向量屬于A的不同特征值的特征向量線性無關(guān)若有n個無關(guān)向量滿足取則告訴了P的尋找方法※N階矩陣A可對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論