版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則()A. B.aC. D.2.已知函數(shù)是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.3.已知,是不共線的向量,,,,若,,三點共線,則實數(shù)的值為()A. B.10C. D.54.已知第二象限角的終邊上有異于原點的兩點,,且,若,則的最小值為()A. B.3C. D.45.給出下列命題:①第二象限角大于第一象限角;②不論是用角度制還是用弧度制度量一個角,它們與扇形的半徑的大小無關(guān);③若,則與的終邊相同;④若,是第二或第三象限的角.其中正確的命題個數(shù)是()A.1 B.2C.3 D.46.函數(shù)的定義域為()A. B.C. D.R7.設(shè),,且,則A. B.C. D.8.福州新港江陰港區(qū)地處福建最大海灣興化灣西北岸,全年全日船泊進出港不受航道及潮水的限制,是迄今為止“我國少有、福建最佳”的天然良港.如圖,是港區(qū)某個泊位一天中6時到18時的水深變化曲線近似滿足函數(shù),據(jù)此可知,這段時間水深(單位:m)的最大值為()A.5 B.6C.8 D.109.已知,則()A. B.C.2 D.10.函數(shù)的減區(qū)間為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.寫出一個同時具有下列性質(zhì)的函數(shù)___________.①是奇函數(shù);②在上為單調(diào)遞減函數(shù);③.12.設(shè)、為平面向量,若存在不全為零的實數(shù)λ,μ使得λμ0,則稱、線性相關(guān),下面的命題中,、、均為已知平面M上的向量①若2,則、線性相關(guān);②若、為非零向量,且⊥,則、線性相關(guān);③若、線性相關(guān),、線性相關(guān),則、線性相關(guān);④向量、線性相關(guān)的充要條件是、共線上述命題中正確的是(寫出所有正確命題的編號)13.給出下列四個結(jié)論:①函數(shù)是奇函數(shù);②將函數(shù)的圖象向右平移個單位長度,可以得到函數(shù)的圖象;③若是第一象限角且,則;④已知函數(shù),其中是正整數(shù).若對任意實數(shù)都有,則的最小值是4其中所有正確結(jié)論的序號是________14.設(shè)b>0,二次函數(shù)y=ax2+bx+a2-1的圖象為下列之一,則a的值為______________15.平面向量,,(R),且與的夾角等于與的夾角,則___.16.經(jīng)過原點并且與直線相切于點的圓的標準方程是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)的定義域為集合的定義域為集合(1)當(dāng)時,求;(2)若“”是“”的必要條件,求實數(shù)的取值范圍18.已知全集,集合,.(1)求;(2)若集合,且,求實數(shù)a的取值范圍.19.已知函數(shù)是定義在R上的奇函數(shù).(1)求函數(shù)的解析式,判斷并證明函數(shù)的單調(diào)性;(2)若存在實數(shù),使成立,求實數(shù)的取值范圍.20.已知函數(shù)過點(1)求的解析式;(2)求的值;(3)判斷在區(qū)間上的單調(diào)性,并用定義證明21.已知集合,.(1)若,求;(2)若“”是“”的充分不必要條件,求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由求出的值,再由誘導(dǎo)公式可求出答案【詳解】因為,所以,所以,故選:C2、B【解析】可知分段函數(shù)在R上單調(diào)遞增,只需要每段函數(shù)單調(diào)遞增且在臨界點處的函數(shù)值左邊小于等于右邊,列出不等式即可【詳解】可知函數(shù)在R上單調(diào)遞增,所以;對稱軸,即;臨界點處,即;綜上所述:故選:B3、A【解析】由向量的線性運算,求得,根據(jù)三點共線,得到,列出方程組,即可求解.【詳解】由,,可得,因為,,三點共線,所以,所以存在唯一的實數(shù),使得,即,所以,解得,.故選:A.4、B【解析】根據(jù),得到,從而得到,進而得到,再利用“1”的代換以及基本不等式求解.【詳解】解:因為,所以,又第二象限角的終邊上有異于原點的兩點,,所以,則,因為,所以,所以,當(dāng)且僅當(dāng),即時,等號成立,故選:B5、A【解析】根據(jù)題意,對題目中的命題進行分析,判斷正誤即可.【詳解】對于①,根據(jù)任意角的概念知,第二象限角不一定大于第一象限角,①錯誤;對于②,根據(jù)角的定義知,不論用角度制還是用弧度制度量一個角,它們與扇形所對半徑的大小無關(guān),②正確;對于③,若,則與的終邊相同,或關(guān)于軸對稱,③錯誤;對于④,若,則是第二或第三象限的角,或終邊在負半軸上,④錯誤;綜上,其中正確命題是②,只有個.故選:【點睛】本題考查真假命題的判斷,考查三角函數(shù)概念,屬于基礎(chǔ)題.6、D【解析】利用指數(shù)函數(shù)的性質(zhì)即可得出選項.【詳解】指數(shù)函數(shù)的定義域為R.故選:D7、C【解析】,則,即,,,即故選點睛:本題主要考查了切化弦及兩角和的余弦公式的應(yīng)用,在遇到含有正弦、余弦及正切的運算時可以將正切轉(zhuǎn)化為正弦及余弦,然后化簡計算,本題還運用了兩角和的余弦公式并結(jié)合誘導(dǎo)公式化簡,注意題目中的取值范圍8、C【解析】從圖象中的最小值入手,求出,進而求出函數(shù)的最大值,即為答案.【詳解】從圖象可以看出,函數(shù)最小值為-2,即當(dāng)時,函數(shù)取得最小值,即,解得:,所以,當(dāng)時,函數(shù)取得最大值,,這段時間水深(單位:m)的最大值為8m.故選:C9、B【解析】先求出,再求出,最后可求.【詳解】因為,故,因為,故,而,故,所以,故,所以,故選:B10、D【解析】先氣的函數(shù)的定義域為,結(jié)合二次函數(shù)性質(zhì)和復(fù)合函數(shù)的單調(diào)性的判定方法,即可求解.【詳解】由題意,函數(shù)有意義,則滿足,即,解得,即函數(shù)的定義域為,令,可得其開口向下,對稱軸的方程為,所以函數(shù)在區(qū)間單調(diào)遞增,在區(qū)間上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在上單調(diào)遞減,即的減區(qū)間為.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一,符合條件即可)【解析】根據(jù)三個性質(zhì)結(jié)合圖象可寫出一個符合條件的函數(shù)解析式【詳解】是奇函數(shù),指數(shù)函數(shù)與對數(shù)函數(shù)不具有奇偶性,冪函數(shù)具有奇偶性,又在上為單調(diào)遞減函數(shù),同時,故可選,且為奇數(shù),故答案為:12、①④【解析】利用和線性相關(guān)等價于和是共線向量,故①正確,②不正確,④正確.通過舉反例可得③不正確【詳解】解:若、線性相關(guān),假設(shè)λ≠0,則,故和是共線向量反之,若和是共線向量,則,即λμ0,故和線性相關(guān)故和線性相關(guān)等價于和是共線向量①若2,則20,故和線性相關(guān),故①正確②若和為非零向量,⊥,則和不是共線向量,不能推出和線性相關(guān),故②不正確③若和線性相關(guān),則和線性相關(guān),不能推出若和線性相關(guān),例如當(dāng)時,和可以是任意的兩個向量.故③不正確④向量和線性相關(guān)的充要條件是和是共線向量,故④正確故答案為①④【點睛】本題考查兩個向量線性相關(guān)的定義,兩個向量共線的定義,明確和線性相關(guān)等價于和是共線向量,是解題的關(guān)鍵13、①②④【解析】直接利用奇函數(shù)的定義,函數(shù)圖象的平移變換,象限角,三角函數(shù)的恒等變換以及余弦函數(shù)圖像的性質(zhì)即可判斷.【詳解】對于①,其中,即為奇函數(shù),則①正確;對于②將的圖象向右平移個單位長度,即,則②正確;對于③若令,,則,則③不正確;對于④,由題意可知,任意一個長為的開區(qū)間上至少包含函數(shù)的一個周期,的周期為,則,即,則的最小值是4,則④正確;故答案為:①②④.14、-1【解析】根據(jù)題中條件可先排除①,②兩個圖象,然后根據(jù)③,④兩個圖象都經(jīng)過原點可求出a的兩個值,再根據(jù)二次函數(shù)圖象的開口方向就可確定a的值.【詳解】∵b>0∴二次函數(shù)的對稱軸不能為y軸,∴可排除掉①,②兩個圖象∵③,④兩個圖象都經(jīng)過原點,∴a2﹣1=0,∴a=±1∵當(dāng)a=1時,二次函數(shù)圖象的開口向上,對稱軸在y軸左方,∴第四個圖象也不對,∴a=﹣1,故答案為:-1【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),做題時注意題中條件的利用,合理地利用排除法解決選擇題15、2【解析】,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角16、【解析】設(shè)圓心坐標,則,,,根據(jù)這三個方程組可以計算得:,所以所求方程為:點睛:設(shè)出圓心與半徑,根據(jù)題意列出方程組,解出圓心和半徑即可三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出集合A,B,根據(jù)集合的補集、交集運算求解即可;(2)由必要條件轉(zhuǎn)化為集合間的包含關(guān)系,建立不等式求解即可.【小問1詳解】由,解得或,所以當(dāng)時,由,即,解得,所以.所以小問2詳解】由(1)知,由,即,解得,所以因為“”是“”的必要條件,所以.所以,解得所以實數(shù)的取值范圍是18、(1)(2)【解析】(1)先求出集合,再按照并集和補集計算即可;(2)先求出,再由求出a取值范圍即可.【小問1詳解】,,;【小問2詳解】,由題得故.19、(1),函數(shù)在上單調(diào)遞減,證明見解析(2)【解析】(1)由為奇函數(shù)且定義域為R,則,即可求得,進而得到解析式;設(shè),代入解析式中證得即可;(2)由奇函數(shù),可將問題轉(zhuǎn)化為,再利用單調(diào)性可得存在實數(shù),使成立,即為存在實數(shù),使成立,進而求解即可【詳解】解:(1)為奇函數(shù)且定義域為R,所以,即,所以,所以,所以函數(shù)在R上單調(diào)遞減,設(shè),則,因為,所以,即,所以,所以,即,所以函數(shù)在上單調(diào)遞減.(2)存在實數(shù),使成立.由題,則存在實數(shù),使成立,因為為奇函數(shù),所以成立,又因為函數(shù)在R上單調(diào)遞減,所以存在實數(shù),使成立,即存在實數(shù),使成立,而當(dāng)時,,所以的取值范圍是【點睛】本題考查利用函數(shù)奇偶性求解析式,考查定義法證明函數(shù)單調(diào)性,考查已知函數(shù)單調(diào)性求參數(shù)問題,考查轉(zhuǎn)化思想和運算能力20、(1)(2)(3)在區(qū)間上單調(diào)遞增;證明見解析【解析】(1)直接將點的坐標代入函數(shù)中求出,從而可求出函數(shù)解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年通信設(shè)備采購與維護合同2篇
- 電梯安裝工程2025年度技術(shù)咨詢合同6篇
- 二零二五年度論壇活動策劃服務(wù)合同模板6篇
- 二零二五版搬家服務(wù)及家居清潔維護合同3篇
- 二零二五年度廢鋼市場供應(yīng)與環(huán)保處理服務(wù)合同3篇
- 二零二五版房屋買賣及鄰里關(guān)系協(xié)調(diào)服務(wù)合同3篇
- 二零二五年度股東干股合作企業(yè)社會責(zé)任履行合同3篇
- 幼兒園2025年度食品供應(yīng)合同2篇
- 二零二五版租賃房屋改造裝修合同3篇
- 二零二五年酒店股權(quán)分割與資產(chǎn)重組咨詢合同3篇
- 2023社會責(zé)任報告培訓(xùn)講稿
- 2023核電廠常規(guī)島及輔助配套設(shè)施建設(shè)施工技術(shù)規(guī)范 第8部分 保溫及油漆
- 2025年蛇年春聯(lián)帶橫批-蛇年對聯(lián)大全新春對聯(lián)集錦
- 表B. 0 .11工程款支付報審表
- 警務(wù)航空無人機考試題庫及答案
- 空氣自動站儀器運營維護項目操作說明以及簡單故障處理
- 新生兒窒息復(fù)蘇正壓通氣課件
- 法律顧問投標書
- 班主任培訓(xùn)簡報4篇(一)
- 成都市數(shù)學(xué)八年級上冊期末試卷含答案
- T-CHSA 020-2023 上頜骨缺損手術(shù)功能修復(fù)重建的專家共識
評論
0/150
提交評論