版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.已知,,,則a,b,c的大小關(guān)系是()A. B.C. D.2.若函數(shù)()在有最大值無最小值,則的取值范圍是()A. B.C. D.3.已知函數(shù),若,且當時,則的取值范圍是A. B.C. D.4.過點,直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或45.函數(shù)的最小值和最大值分別為()A. B.C. D.6.若圓上有且只有兩個點到直線的距離等于1,則半徑r的取值范圍是A.(4,6) B.[4,6]C.(4,5) D.(4,5]7.設(shè)命題,則命題p的否定為()A. B.C. D.8.若,則的大小關(guān)系是()A. B.C. D.9.已知與分別是函數(shù)與的零點,則的值為A. B.C.4 D.510.在空間直角坐標系中,已知球的球心為,且點在球的球面上,則球的半徑為()A.4 B.5C.16 D.2511.已知函數(shù)在上單調(diào)遞減,則的取值范圍為()A. B.C. D.12.下列各組函數(shù)與的圖象相同的是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.函數(shù)的單調(diào)遞增區(qū)間為________________.14.設(shè)x、y滿足約束條件,則的最小值是________.15.已知定義在上的偶函數(shù),當時,,則________16.函數(shù)的定義域為____三、解答題(本大題共6小題,共70分)17.已知函數(shù),且.(1)判斷的奇偶性;(2)證明在上單調(diào)遞增;(3)若不等式在上恒成立,求實數(shù)的取值范圍.18.已知,且的最小正周期為.(1)求關(guān)于x的不等式的解集;(2)求在上的單調(diào)區(qū)間.19.求值:(1);(2)20.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值21.已知函數(shù)(1)求函數(shù)的最小正周期;(2)求函數(shù)在上的值域22.若函數(shù)在定義域內(nèi)存在實數(shù)使成立,則稱函數(shù)有“漂移點”.(1)函數(shù)是否有漂移點?請說明理由;(2)證明函數(shù)在上有漂移點;(3)若函數(shù)在上有漂移點,求實數(shù)的取值范圍.
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性分析出的范圍,根據(jù)對數(shù)函數(shù)的單調(diào)性分析出的范圍,結(jié)合中間值,即可判斷出的大小關(guān)系.【詳解】因為在上單調(diào)遞減,所以,所以,又因為且在上單調(diào)遞增,所以,所以,又因為在上單調(diào)遞減,所以,所以,綜上可知:,故選:B.【點睛】方法點睛:常見的比較大小的方法:(1)作差法:作差與作比較;(2)作商法:作商與作比較(注意正負);(3)函數(shù)單調(diào)性法:根據(jù)函數(shù)單調(diào)性比較大?。唬?)中間值法:取中間值進行大小比較.2、B【解析】求出,根據(jù)題意結(jié)合正弦函數(shù)圖象可得答案.【詳解】∵,∴,根據(jù)題意結(jié)合正弦函數(shù)圖象可得,解得.故選:B.3、B【解析】首先確定函數(shù)的解析式,然后確定的取值范圍即可.【詳解】由題意可知函數(shù)關(guān)于直線對稱,則,據(jù)此可得,由于,故令可得,函數(shù)的解析式為,則,結(jié)合三角函數(shù)的性質(zhì),考查臨界情況:當時,;當時,;則的取值范圍是.本題選擇B選項.【點睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.4、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.5、C【解析】2.∴當時,,當時,,故選C.6、A【解析】由圓,可得圓心的坐標為圓心到直線的距離為:由得所以的取值范圍是故答案選點睛:本題的關(guān)鍵是理解“圓上有且只有兩個點到直線的距離等于1”,將其轉(zhuǎn)化為點到直線的距離,結(jié)合題意計算求得結(jié)果7、C【解析】由全稱命題的否定是特稱命題即可得解.【詳解】根據(jù)全稱命題的否定是特稱命題可知,命題的否定命題為,故選:C8、C【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,把各數(shù)與中間值0,1比較即得【詳解】利用指數(shù)函數(shù)的單調(diào)性知:,即;利用指數(shù)函數(shù)的單調(diào)性知:,即;利用對數(shù)函數(shù)的單調(diào)性知:,即;所以故選:C9、D【解析】設(shè),,由,互為反函數(shù),其圖象關(guān)于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立方程得,由中點坐標公式得:,又,故得解【詳解】解:由,化簡得,設(shè),,由,互為反函數(shù),其圖象關(guān)于直線對稱,作直線,分別交,的圖象為A,B兩點,點為A,B的中點,聯(lián)立得;,由中點坐標公式得:,所以,故選D【點睛】本題考查了反函數(shù)、中點坐標公式及函數(shù)的零點等知識,屬于難題.10、B【解析】根據(jù)空間中兩點間距離公式,即可求得球的半徑.【詳解】球的球心為,且點在球的球面上,所以設(shè)球的半徑為則.故選:B【點睛】本題考查了空間中兩點間距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.11、C【解析】可分析單調(diào)遞減,即將題目轉(zhuǎn)化為在上單調(diào)遞增,分別討論與的情況,進而求解【詳解】由題可知單調(diào)遞減,因為在上單調(diào)遞減,則在上單調(diào)遞增,當時,在上單調(diào)遞減,不符合題意,舍去;當時,,解得,即故選C【點睛】本題考查對數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查復(fù)合函數(shù)單調(diào)性問題,考查解不等式12、B【解析】根據(jù)相等函數(shù)的定義即可得出結(jié)果.【詳解】若函數(shù)與的圖象相同則與表示同一個函數(shù),則與的定義域和解析式相同.A:的定義域為R,的定義域為,故排除A;B:,與的定義域、解析式相同,故B正確;C:的定義域為R,的定義域為,故排除C;D:與的解析式不相同,故排除D.故選:B二、填空題(本大題共4小題,共20分)13、【解析】函數(shù)由,復(fù)合而成,求出函數(shù)的定義域,根據(jù)復(fù)合函數(shù)的單調(diào)性即可得結(jié)果.【詳解】函數(shù)由,復(fù)合而成,單調(diào)遞減令,解得或,即函數(shù)的定義域為,由二次函數(shù)的性質(zhì)知在是減函數(shù),在上是增函數(shù),由復(fù)合函數(shù)的單調(diào)性判斷知函數(shù)的單調(diào)遞增區(qū)間,故答案為.【點睛】本題考查用復(fù)合函數(shù)的單調(diào)性求單調(diào)區(qū)間,此題外層是一對數(shù)函數(shù),故要先解出函數(shù)的定義域,在定義域上研究函數(shù)的單調(diào)區(qū)間,這是本題易失分點,切記!14、-6【解析】先根據(jù)約束條件畫出可行域,再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的點時,從而得到的最小值即可【詳解】解:由得,作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分ABC):平移直線,由圖象可知當直線,過點A時,直線截距最大,此時z最小,由得,即,代入目標函數(shù),得∴目標函數(shù)的最小值是﹣6故答案為:【點睛】本題考查簡單線性規(guī)劃問題,屬中檔題15、6【解析】利用函數(shù)是偶函數(shù),,代入求值.【詳解】是偶函數(shù),.故答案6【點睛】本題考查利用函數(shù)的奇偶性求值,意在考查轉(zhuǎn)化與變形,屬于簡單題型.16、【解析】本題首先可以通過分式的分母不能為以及根式的被開方數(shù)大于等于來列出不等式組,然后通過計算得出結(jié)果【詳解】由題意可知,解得或者,故定義域為【點睛】本題考查函數(shù)的定義域的相關(guān)性質(zhì),主要考查函數(shù)定義域的判斷,考查計算能力,考查方程思想,是簡單題三、解答題(本大題共6小題,共70分)17、(1)奇函數(shù)(2)詳見解析(3)【解析】(1)運用代入法,可得m值,計算f(-x)與f(x)比較即可得到結(jié)論;(2)運用單調(diào)性的定義證明,注意取值、作差和變形、定符號和下結(jié)論(3)若不等式在上恒成立,所以在上恒成立,求即可得解.【詳解】(1)即所以函數(shù)的定義域為所以為奇函數(shù)(2)設(shè)且,則因為且所以,所以即則在上單調(diào)遞增(3)若不等式在上恒成立所以在上恒成立由(2)知在上遞增所以所以【點睛】本題考查函數(shù)的奇偶性和單調(diào)性的判斷和證明,考查不等式恒成立,采用分離參數(shù)是常用方法,屬于中檔題18、(1)(2)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為【解析】(1)首先利用兩角差的正弦公式及二倍角公式將函數(shù)化簡,再根據(jù)函數(shù)的最小正周期求出,即可得到函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì)計算可得;(2)由的取值范圍,求出的范圍,再跟正弦函數(shù)的性質(zhì)計算可得.【小問1詳解】解:因為所以即,由及的最小正周期為,所以,解得;由得,,解得,所求不等式的解集為小問2詳解】解:,,在和上遞增,在上遞減,令,解得;令,解得;令,解得;所以在上的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;19、(1)(2)【解析】(1)利用指數(shù)冪計算公式化簡求值;(2)利用對數(shù)計算公式換件求值.【小問1詳解】【小問2詳解】.20、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結(jié)BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴EF是△DD1B的中位線,∴EF∥D1B,∵D1B?平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是異面直線EF與BC所成的角(或所成角的補角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1?平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【點睛】本題主要考查空間直線平面位置關(guān)系的證明和異面直線所成角的計算,意在考查學生對這些知識的掌握水平和分析推理能力.21、(1);(2).【解析】(1)利用降冪公式、輔助角公式,結(jié)合正弦型函數(shù)最小正周期公式進行求解即可;(2)結(jié)合(1)的結(jié)論,利用正弦型函數(shù)的單調(diào)性進行求解即可.【小問1詳解】,函數(shù)的最小正周期為;【小問2詳解】由,則,則,即,所以函數(shù)在上的值域為.22、(1)沒有,理由見解析;(2)證明見解析;(3).【解析】(1)根據(jù)給定定義列方程求解判斷作答.(2)根據(jù)給定定義構(gòu)造函數(shù),由零點存在性定理判斷函數(shù)的零點情況即可作答.(3)根據(jù)給定定義列方程,變形構(gòu)造函數(shù),利用函數(shù)有零點分類討論計算作答.【小問1詳解】假設(shè)函數(shù)有“漂移點”,則,此方程無實根,所以函數(shù)沒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度幕墻抗風抗震加固工程合同范本4篇
- 2025年度文化娛樂品牌授權(quán)使用許可
- 2025年度出租車司機職業(yè)操守與信息保密合同
- 2025年度墓地陵園墓地使用權(quán)購買協(xié)議3篇
- 2025年度肉類產(chǎn)品加工與銷售一體化合同3篇
- 2025年度餐飲加盟店品牌授權(quán)與維護合同3篇
- 二零二五年度寵物貓寵物用品代理銷售合同3篇
- 2025版基因編輯技術(shù)合作項目建議書編制范本3篇
- 2025年KTV主題房間租賃及定制服務(wù)協(xié)議3篇
- 二零二五年度國際展覽中心物業(yè)展覽服務(wù)合同范本3篇
- 《朝天子·詠喇叭-王磐》核心素養(yǎng)目標教學設(shè)計、教材分析與教學反思-2023-2024學年初中語文統(tǒng)編版
- 成長小說智慧樹知到期末考試答案2024年
- 紅色革命故事《王二小的故事》
- 海洋工程用高性能建筑鋼材的研發(fā)
- 蘇教版2022-2023學年三年級數(shù)學下冊開學摸底考試卷(五)含答案與解析
- 英語48個國際音標課件(單詞帶聲、附有聲國際音標圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學力申碩統(tǒng)考英語考試真題
- 家具安裝工培訓教案優(yōu)質(zhì)資料
- 在雙減政策下小學音樂社團活動有效開展及策略 論文
評論
0/150
提交評論