版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.2.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i3.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-34.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值5.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.6.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當(dāng)時,函數(shù)的圖象的對稱中心為;②當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時,在上的最大值為1.A.1 B.2 C.3 D.47.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.8.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.9.已知且,函數(shù),若,則()A.2 B. C. D.10.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.11.設(shè)全集,集合,則=()A. B. C. D.12.已知函數(shù),對任意的,,當(dāng)時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是二、填空題:本題共4小題,每小題5分,共20分。13.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_____袋.14.展開式中的系數(shù)為_______________.15.在直角坐標(biāo)系中,已知點和點,若點在的平分線上,且,則向量的坐標(biāo)為___________.16.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當(dāng)時,對于任意,當(dāng)時,不等式恒成立,求出實數(shù)的取值范圍.18.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的單調(diào)性;(2)若,當(dāng)時,函數(shù),求函數(shù)的最小值.19.(12分)設(shè)等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:.20.(12分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點與極值.(2)當(dāng),時,證明:.21.(12分)為增強學(xué)生的法治觀念,營造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動,并組織全校學(xué)生進行法律知識競賽.現(xiàn)從全校學(xué)生中隨機抽取50名學(xué)生,統(tǒng)計他們的競賽成績,已知這50名學(xué)生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再從這5名學(xué)生中隨機抽取2名學(xué)生,求這2名學(xué)生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.22.(10分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準(zhǔn)線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【題目詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【答案點睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.2.B【答案解析】
利用復(fù)數(shù)的運算法則、虛部的定義即可得出【題目詳解】,則復(fù)數(shù)z的虛部為.故選:B.【答案點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.3.B【答案解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【題目詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【答案點睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.4.C【答案解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【題目詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【答案點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.5.B【答案解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.6.C【答案解析】
逐一分析選項,①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【題目詳解】①為奇函數(shù),其圖象的對稱中心為原點,根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因為當(dāng)時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時,,此時在上為增函數(shù),不合題意,故.令,解得.因為在上不單調(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因為,,所以最大值為64,結(jié)論錯誤.故選:C【答案點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.7.D【答案解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【題目詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【答案點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題8.C【答案解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【題目詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【答案點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.9.C【答案解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【題目詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【答案點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.10.C【答案解析】
根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時.【題目詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時,滿足輸出的值為8.故選:C【答案點睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.11.A【答案解析】
先求得全集包含的元素,由此求得集合的補集.【題目詳解】由解得,故,所以,故選A.【答案點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.12.D【答案解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【題目詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,由,故D正確.故選:D【答案點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【答案解析】
根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【題目詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【答案點睛】本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.14.【答案解析】
把按照二項式定理展開,可得的展開式中的系數(shù).【題目詳解】解:,故它的展開式中的系數(shù)為,故答案為:.【答案點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.15.【答案解析】
點在的平分線可知與向量共線,利用線性運算求解即可.【題目詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【答案點睛】本題主要考查了向量的線性運算,利用向量的坐標(biāo)求向量的模,屬于中檔題.16.【答案解析】
基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個數(shù)m72,由此能求出其中三種顏色的球都有的概率.【題目詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【答案點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)極小值為,極大值為.(2)【答案解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【題目詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【答案點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點在于對目標(biāo)式的變形,屬綜合性中檔題.18.(1)見解析(2)的最小值為【答案解析】
(1)由題可得函數(shù)的定義域為,,當(dāng)時,,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在上單調(diào)遞增.(2)方法一:當(dāng)時,,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時取等號.當(dāng)時,設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當(dāng)時,;當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因為,,所以,所以,當(dāng)且僅當(dāng)時取等號.所以當(dāng)時,函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當(dāng)時,,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因為,所以當(dāng)時,恒成立,所以當(dāng)時,恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.19.(Ⅰ);(Ⅱ)詳見解析.【答案解析】
(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯位相減法即可得出.【題目詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【答案點睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.20.(1)極小值點為,極小值為,無極大值;(2)證明見解析【答案解析】
先對函數(shù)求導(dǎo),結(jié)合已知及導(dǎo)數(shù)的幾何意義可求,結(jié)合單調(diào)性即可求解函數(shù)的極值點及極值;令,問題可轉(zhuǎn)化為求解函數(shù)的最值,結(jié)合導(dǎo)數(shù)可求.【題目詳解】(1)由題得函數(shù)的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調(diào)遞增.令,得∴在上單調(diào)遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度三人合伙開展物流倉儲服務(wù)合同
- 2024年店鋪分割財產(chǎn)分配協(xié)議
- 2024年廢窯廠坑塘土地租賃協(xié)議
- 2024年度0架AC3A直升機購銷協(xié)議
- 2024年度煤炭買賣合同(長協(xié))
- 2024水電安裝勞務(wù)分包合同范本
- 2024年度云計算服務(wù)與技術(shù)研發(fā)合同
- 2024年度新能源汽車銷售與服務(wù)分包合同
- 2024購買車輛合同范本
- 2024年度智能家居解決方案合同
- Unit 2 This is my pencil. Lesson 10(教學(xué)設(shè)計)-2024-2025學(xué)年人教精通版英語三年級上冊
- 2024至2030年中國巖土工程市場深度分析及發(fā)展趨勢研究報告
- 新版高血壓病人的護理培訓(xùn)課件
- 醫(yī)院等級創(chuàng)建工作匯報
- 2024年江西省公務(wù)員錄用考試《行測》題(網(wǎng)友回憶版)(題目及答案解析)
- VDA6.3基礎(chǔ)培訓(xùn)考核測試卷附答案
- 第01講 正數(shù)和負(fù)數(shù)、有理數(shù)-人教版新七年級《數(shù)學(xué)》暑假自學(xué)提升講義(解析版)
- 信息系統(tǒng)部署與運維-題庫帶答案
- 婚姻心理學(xué)解讀包含內(nèi)容
- DZ/T 0462.3-2023 礦產(chǎn)資源“三率”指標(biāo)要求 第3部分:鐵、錳、鉻、釩、鈦(正式版)
- 備戰(zhàn)2024年高考英語考試易錯點12 名詞性從句(4大陷阱)(解析版)
評論
0/150
提交評論