2023學(xué)年湖南省長沙市寧鄉(xiāng)一中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷(含答案解析)_第1頁
2023學(xué)年湖南省長沙市寧鄉(xiāng)一中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷(含答案解析)_第2頁
2023學(xué)年湖南省長沙市寧鄉(xiāng)一中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷(含答案解析)_第3頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)過點(diǎn)的直線分別與軸的正半軸和軸的正半軸交于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,為坐標(biāo)原點(diǎn),若,且,則點(diǎn)的軌跡方程是()A. B.C. D.2.()A. B. C.1 D.3.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.4.過拋物線的焦點(diǎn)的直線與拋物線交于、兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.5.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.36.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A.1 B. C. D.8.若向量,,則與共線的向量可以是()A. B. C. D.9.的展開式中有理項有()A.項 B.項 C.項 D.項10.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.11.已知函數(shù),則在上不單調(diào)的一個充分不必要條件可以是()A. B. C.或 D.12.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖的算法,輸出的結(jié)果是_________.14.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.15.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.16.在中,內(nèi)角A,B,C的對邊分別是a,b,c,且,,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)有三個零點(diǎn),求實數(shù)的取值范圍.18.(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.19.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時的值20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.21.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點(diǎn)分別為、,且點(diǎn)、與橢圓的上頂點(diǎn)構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點(diǎn),且分別與直線和直線相交于點(diǎn)、.試判斷是否為定值,并說明理由.22.(10分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】

設(shè)坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算表示出,從而可利用表示出;由坐標(biāo)運(yùn)算表示出,代入整理可得所求的軌跡方程.【題目詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【答案點(diǎn)睛】本題考查動點(diǎn)軌跡方程的求解,涉及到平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算;關(guān)鍵是利用動點(diǎn)坐標(biāo)表示出變量,根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算可整理得軌跡方程.2.A【答案解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【題目詳解】,,因此,.故選:A.【答案點(diǎn)睛】本題考查復(fù)數(shù)模長的計算,同時也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.3.B【答案解析】

根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【題目詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【答案點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對數(shù)運(yùn)算,屬綜合基礎(chǔ)題.4.B【答案解析】

設(shè)點(diǎn)、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點(diǎn)弦長公式可求得.【題目詳解】設(shè)點(diǎn)、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【答案點(diǎn)睛】本題考查拋物線焦點(diǎn)弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.5.A【答案解析】

由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【題目詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【答案點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).6.B【答案解析】

設(shè),則,可得,即可得到,進(jìn)而找到對應(yīng)的點(diǎn)所在象限.【題目詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)為,在第二象限.故選:B【答案點(diǎn)睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)所在象限,考查復(fù)數(shù)的模,考查運(yùn)算能力.7.A【答案解析】

設(shè),因為,得到,利用直線的斜率公式,得到,結(jié)合基本不等式,即可求解.【題目詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,設(shè),因為,即線段的中點(diǎn),所以,所以直線的斜率,當(dāng)且僅當(dāng),即時等號成立,所以直線的斜率的最大值為1.故選:A.【答案點(diǎn)睛】本題主要考查了拋物線的方程及其應(yīng)用,直線的斜率公式,以及利用基本不等式求最值的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.8.B【答案解析】

先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【題目詳解】故選B【答案點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯位.9.B【答案解析】

由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【題目詳解】,,當(dāng),,,時,為有理項,共項.故選:B.【答案點(diǎn)睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.10.B【答案解析】

先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對應(yīng)的的取值范圍即可.【題目詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點(diǎn),但其導(dǎo)函數(shù)圖象(實線)與軸有三個交點(diǎn),不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個交點(diǎn),合乎題意.對函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【答案點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.11.D【答案解析】

先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【題目詳解】,若在上不單調(diào),令,則函數(shù)對稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時,顯然不成立;當(dāng)時,只需或,解得或.故選:D.【答案點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.12.D【答案解析】

把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【題目詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【答案點(diǎn)睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.二、填空題:本題共4小題,每小題5分,共20分。13.55【答案解析】

根據(jù)該For語句的功能,可得,可得結(jié)果【題目詳解】根據(jù)該For語句的功能,可得則故答案為:55【答案點(diǎn)睛】本題考查For語句的功能,屬基礎(chǔ)題.14.【答案解析】乙不輸?shù)母怕蕿?,?15.60【答案解析】

根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【題目詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設(shè)組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【答案點(diǎn)睛】本題考查了分層抽樣的定義與簡單應(yīng)用,古典概型概率的簡單應(yīng)用,由各層人數(shù)求總?cè)藬?shù)的應(yīng)用,屬于基礎(chǔ)題.16.9【答案解析】

已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結(jié)果.【題目詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【答案點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【答案解析】

(1)要證明,只需證明即可;(2)有3個根,可轉(zhuǎn)化為有3個根,即與有3個不同交點(diǎn),利用導(dǎo)數(shù)作出的圖象即可.【題目詳解】(1)令,則,當(dāng)時,,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個零點(diǎn),即有3個根,顯然0不是其根,所以有3個根,令,則,當(dāng)時,,當(dāng)時,,當(dāng)時,,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點(diǎn)個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.18.(1)或(2)證明見解析【答案解析】

(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【題目詳解】(1)當(dāng)時,恒成立,解得;當(dāng)時,由,解得;當(dāng)時,由解得所以的解集為或(2)由(1)可求得最小值為,即因為均為正實數(shù),且(當(dāng)且僅當(dāng)時,取“”)所以,即.【答案點(diǎn)睛】本小題主要考查絕對值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.19.(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【答案解析】

(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時,可求解.【題目詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,且滿足,,當(dāng)時,取最大值,此時,【答案點(diǎn)睛】這個題目考查了參數(shù)方程化為普通方程的方法,極坐標(biāo)化為直角坐標(biāo)的方法,以及極坐標(biāo)中極徑的幾何意義,極徑代表的是曲線上的點(diǎn)到極點(diǎn)的距離,在參數(shù)方程和極坐標(biāo)方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點(diǎn)的曲線,而t的應(yīng)用更廣泛一些.20.(1);(2).【答案解析】

(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【題目詳解】(1)當(dāng)時,,此時不等式無解;當(dāng)時,,由得;當(dāng)時,,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當(dāng)時,;當(dāng)時,,所以當(dāng)時,,由得或,所以實數(shù)的取值范圍為.【答案點(diǎn)睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.21.(1)(2)為定值.【答案解析】

(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點(diǎn),聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達(dá)式,比即可得出為定值.【題目詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論