賀州市重點中學2023屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
賀州市重點中學2023屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
賀州市重點中學2023屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
賀州市重點中學2023屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
賀州市重點中學2023屆高一數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.若方程表示圓,則實數(shù)的取值范圍是A. B.C. D.2.函數(shù)圖像大致為()A. B.C. D.3.冪函數(shù)的圖象過點,則函數(shù)的值域是()A. B.C. D.4.已知函數(shù),下面關于說法正確的個數(shù)是()①的圖象關于原點對稱②的圖象關于y軸對稱③的值域為④在定義域上單調遞減A.1 B.2C.3 D.45.若兩直線與平行,則它們之間的距離為A. B.C. D.6.若,都為正實數(shù),,則的最大值是()A. B.C. D.7.已知關于的不等式的解集是,則的值是()A. B.2C.22 D.8.已知函數(shù)f(x)=,若f(a)=f(b)=f(c)且a<b<c,則ab+bc+ac的取值范圍為()A. B.C. D.9.函數(shù)的圖像恒過定點,則的坐標是()A. B.C. D.10.設則的最大值是()A.3 B.C. D.11.斜率為4的直線經(jīng)過點A(3,5),B(a,7),C(-1,b)三點,則a,b的值為()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=1112.下列函數(shù)是偶函數(shù)的是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知函數(shù).(1)當函數(shù)取得最大值時,求自變量x的集合;(2)完成下表,并在平面直角坐標系內(nèi)作出函數(shù)在的圖象.x0y14.已知函數(shù)f(x)=log0.5(x2-ax+3a)在[2,+∞)單調遞減,則a的取值范圍為________15.若,,則a、b的大小關系是______.(用“<”連接)16.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.現(xiàn)有兩名剪紙藝人創(chuàng)作甲、乙兩種作品,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標分別為第i名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),點Bi的橫、縱坐標分別為第i名藝人下午創(chuàng)作的甲作品數(shù)和乙作品數(shù),i=1,①該天上午第1名藝人創(chuàng)作的甲作品數(shù)比乙作品數(shù)少;②該天下午第1名藝人創(chuàng)作的乙作品數(shù)比第2名藝人創(chuàng)作的乙作品數(shù)少;③該天第1名藝人創(chuàng)作的作品總數(shù)比第2名藝人創(chuàng)作的作品總數(shù)少;④該天第2名藝人創(chuàng)作的作品總數(shù)比第1名藝人創(chuàng)作的作品總數(shù)少.其中所有正確結論序號是___________.三、解答題(本大題共6小題,共70分)17.已知函數(shù),若同時滿足以下條件:①在D上單調遞減或單調遞增;②存在區(qū)間,使在上的值域是,那么稱為閉函數(shù)(1)求閉函數(shù)符合條件②的區(qū)間;(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間;若不是請說明理由;(3)若是閉函數(shù),求實數(shù)的取值范圍18.已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為.(1)求函數(shù)的解析式;(2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若總存在,使得不等式成立,求實數(shù)的最小值.19.求解下列問題(1)已知,且為第二象限角,求的值.(2)已知,求的值20.如圖,在四棱錐中,平面,,為棱上一點.(1)設為與的交點,若,求證:平面;(2)若,求證:21.已知函數(shù)f(x)=sin(2x+π(1)列表,描點,畫函數(shù)f(x)的簡圖,并由圖象寫出函數(shù)f(x)的單調區(qū)間及最值;(2)若f(x1)=f(x2)22.如圖,已知圓M過點P(10,4),且與直線4x+3y-20=0相切于點A(2,4)(1)求圓M的標準方程;(2)設平行于OA的直線l與圓M相交于B、C兩點,且,求直線l的方程;

參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】由二元二次方程表示圓的充要條件可知:,解得,故選A考點:圓的一般方程2、C【解析】先分析給定函數(shù)的奇偶性,排除兩個選項,再在x>0時,探討函數(shù)值正負即可判斷得解.【詳解】函數(shù)的定義域為,,即函數(shù)是定義域上的奇函數(shù),其圖象關于原點對稱,排除選項A,B;x>0時,,而,則有,顯然選項D不滿足,C符合要求.故選:C3、C【解析】設,帶點計算可得,得到,令轉化為二次函數(shù)的值域求解即可.【詳解】設,代入點得,則,令,函數(shù)的值域是.故選:C.4、B【解析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質可得單調性和值域.【詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關于原點對稱,即①正確,②不正確;因為,由于單調遞減,所以單調遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【點睛】關鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調性簡單的判斷方式.5、D【解析】根據(jù)兩直線平行求得值,利用平行線間距離公式求解即可【詳解】與平行,,即直線為,即故選D【點睛】本題考查求平行線間距離.當直線與直線平行時,;平行線間距離公式為,因此兩平行直線需滿足,6、D【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D7、C【解析】轉化為一元二次方程兩根問題,用韋達定理求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,故,,所以.故選:C8、D【解析】畫出函數(shù)的圖象,根據(jù),,互不相等,且(a)(b)(c),我們令,我們易根據(jù)對數(shù)的運算性質,及,,的取值范圍得到的取值范圍【詳解】解:作出函數(shù)的圖象如圖,不妨設,,,,,,由圖象可知,,則,解得,,則,解得,,的取值范圍為故選.【點睛】本題主要考查分段函數(shù)、對數(shù)的運算性質以及利用數(shù)形結合解決問題的能力,解答的關鍵是圖象法的應用,即利用函數(shù)的圖象交點研究方程的根的問題,屬于中檔題.9、D【解析】利用指數(shù)函數(shù)的性質即可得出結果.【詳解】由指數(shù)函數(shù)恒過定點,所以函數(shù)的圖像恒過定點.故選:D10、D【解析】利用基本不等式求解.【詳解】因為所以,當且僅當,即時,等號成立,故選:D11、C【解析】因為,所以,則,故選C12、D【解析】利用偶函數(shù)的性質對每個選項判斷得出結果【詳解】A選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù),A選項錯誤B選項:函數(shù)定義域為,且,,故函數(shù)既不是奇函數(shù)也不是偶函數(shù)C選項:函數(shù)定義域為,,故函數(shù)為奇函數(shù)D選項:函數(shù)定義域為,,故函數(shù)是偶函數(shù)故選D【點睛】本題考查函數(shù)奇偶性的定義,在證明函數(shù)奇偶性時需注意函數(shù)的定義域;還需掌握:奇函數(shù)加減奇函數(shù)為奇函數(shù);偶函數(shù)加減偶函數(shù)為偶函數(shù);奇函數(shù)加減偶函數(shù)為非奇非偶函數(shù);奇函數(shù)乘以奇函數(shù)為偶函數(shù);奇函數(shù)乘以偶函數(shù)為奇函數(shù);偶函數(shù)乘以偶函數(shù)為偶函數(shù)二、填空題(本大題共4小題,共20分)13、(1)(2)答案見解析【解析】(1)由三角恒等變換求出解析式,再求得最大值時的x的集合,(2)由五點法作圖,列出表格,并畫圖即可.【小問1詳解】令,函數(shù)取得最大值,解得,所以此時x的集合為.【小問2詳解】表格如下:x0y11作圖如下,14、(-4,4]【解析】根據(jù)復合函數(shù)的單調性,結合真數(shù)大于零,列出不等式求解即可.【詳解】令g(x)=x2-ax+3a,因為f(x)=log0.5(x2-ax+3a)在[2,+∞)單調遞減,所以函數(shù)g(x)在區(qū)間[2,+∞)內(nèi)單調遞增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案為:.【點睛】本題考查由對數(shù)型復合函數(shù)的單調性求參數(shù)范圍,注意定義域即可,屬基礎題.15、【解析】容易看出,<0,>0,從而可得出a,b的大小關系【詳解】,>0,,∴a<b故答案為a<b【點睛】本題主要考查對數(shù)函數(shù)的單調性,考查對數(shù)函數(shù)和指數(shù)函數(shù)的值域.意在考查學生對這些知識的理解掌握水平和分析推理能力.16、①②④【解析】根據(jù)點的坐標的意義結合圖形逐個分析判斷即可【詳解】對于①,由題意可知,A1的橫、縱坐標分別為第1名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),由圖可知A1的橫坐標小于縱坐標,所以該天上午第對于②,由題意可知,B1的縱坐標為第1名藝人下午創(chuàng)作的乙作品數(shù),B2的縱坐標為第2名藝人下午創(chuàng)作的乙作品數(shù),由圖可知B1的縱坐標小于B2的縱坐標,所以該天下午第對于③,④,由圖可知,A1,B1的橫、縱坐標之和大于A2故答案為:①②④三、解答題(本大題共6小題,共70分)17、(1),;(2)見解析;(3)【解析】(1)由在R上單減,列出方程組,即可求的值;(2)由函數(shù)y=2x+lgx在(0,+∞)單調遞增可知即,結合對數(shù)函數(shù)的單調性可判斷(3)易知在[﹣2,+∞)上單調遞增.設滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根.結合二次方程的實根分布可求k的范圍【詳解】解:(1)∵在R上單減,所以區(qū)間[a,b]滿足,解得a=﹣1,b=1(2)∵函數(shù)y=2x+lgx在(0,+∞)單調遞增假設存在滿足條件的區(qū)間[a,b],a<b,則,即∴l(xiāng)gx=﹣x在(0,+∞)有兩個不同的實數(shù)根,但是結合對數(shù)函數(shù)的單調性可知,y=lgx與y=﹣x只有一個交點故不存在滿足條件的區(qū)間[a,b],函數(shù)y=2x+lgx是不是閉函數(shù)(3)易知在[﹣2,+∞)上單調遞增設滿足條件B的區(qū)間為[a,b],則方程組有解,方程至少有兩個不同的解即方程x2﹣(2k+1)x+k2﹣2=0有兩個都不小于k的不根∴得,即所求【點睛】本題主要考查了函數(shù)的單調性的綜合應用,函數(shù)與方程的綜合應用問題,其中解答中根據(jù)函數(shù)與方程的交點相互轉化關系,合理轉化為二次函數(shù)的圖象與性質的應用是解答的關鍵,著重考查了函數(shù)知識及數(shù)形結合思想的應用,以及轉化思想的應用,試題有較強的綜合性,屬于難題.18、(1);(2).【解析】(1)根據(jù)相鄰兩個交點之間的距離為可求出,由圖像上一個最高點為可求出,,從而得到函數(shù)的解析式;(2)根據(jù)三角變換法則可得,再求出在上的最小值,利用對數(shù)函數(shù)的單調性即可求出實數(shù)的最小值【詳解】(1)∵,∴,解得.又函數(shù)圖象上一個最高點為,∴,(),∴(),又,∴,∴(2)把函數(shù)的圖象向左平移個單位長度,得到;然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,即,∵,∴,,依題意知,,∴,即實數(shù)的最小值為.19、(1)(2)【解析】(1)結合同角三角函數(shù)的基本關系式求得.(2)結合同角三角函數(shù)的基本關系式求得、,從而求得.【小問1詳解】,且為第二象限角,,.【小問2詳解】,,又,,.20、(1)見解析;(2)見解析.【解析】(1)只需證得,即可證得平面;(2)因為平面,平面,所以,即可證得平面,從而得證.試題解析:(1)在與中,因為,所以,又因為,所以在中,有,則.又因為平面,平面,所以平面.(2)因為平面,平面,所以.又因為,平面,平面,,所以平面,平面,所以21、(1)圖象見解析,在[-π4,π8]、[5π(2)答案見解析.【解析】(1)根據(jù)解析式,應用五點法確定點坐標列表,進而描點畫圖象,由圖象判斷單調性、最值.(2)討論f(x1)=f(x2【小問1詳解】由解析式可得:x--π3π5π3πf(x)-010-1-∴f(x)的圖象如下圖示:∴f(x)在[-π4,π8]、[【小問2詳解】1、若f(x1)=f(x2)∈(-22、若f(x1)=f(當x1+x當x1+x當x1+x3、若f(x1)=f(x2)∈(-1,-222、(1)(2)2x-y+5=0或2x-y-15=0.【解析】(1)由題意得到圓心M(6,7),半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論