2023年高三復(fù)習(xí)專項(xiàng)練習(xí):第57練 球的切、接問(wèn)題_第1頁(yè)
2023年高三復(fù)習(xí)專項(xiàng)練習(xí):第57練 球的切、接問(wèn)題_第2頁(yè)
2023年高三復(fù)習(xí)專項(xiàng)練習(xí):第57練 球的切、接問(wèn)題_第3頁(yè)
2023年高三復(fù)習(xí)專項(xiàng)練習(xí):第57練 球的切、接問(wèn)題_第4頁(yè)
2023年高三復(fù)習(xí)專項(xiàng)練習(xí):第57練 球的切、接問(wèn)題_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第57練球的切、接問(wèn)題—基礎(chǔ)對(duì)點(diǎn)練考點(diǎn)一定義法(2022?荊州中學(xué)模擬)已知三棱錐。-A8C的四個(gè)頂點(diǎn)在球。的球面上,若A8=AC=BC=DB=DC=\,當(dāng)三棱錐。-A8C的體積取到最大值時(shí),球。的表面積為()‘5兀c-c C2°兀A.-B.2兀C.5兀D.-^-答案A解析如圖所示,當(dāng)三棱錐。一A8C的體積取到最大值時(shí),則平面ABCJ_平面08c.取BC的中點(diǎn)G,連接AG,DG,貝ij4G_L8C,DG±BC,分別取/XABC與△QBC的外心E,F,分別過(guò)E,F作平面48c與平面08c的垂線,相交于點(diǎn)。,連接80,0G,則。為三棱錐。一ABC外接球的球心,由AB=AC=BC=DB=DC=1,得正方形OEGF的邊長(zhǎng)為坐,貝UOG=*,二三棱錐D-ABC的外接球的半徑R=y]OG2+BG2=...球。的表面積為47rx(2022?云南師大附中模擬)已知在直三棱柱ABC-AiBiCi中,ABLBC,AB=3,BC=4,A4i=3,設(shè)該直三棱柱的外接球的表面積為S,,該直三棱柱內(nèi)部半徑最大的球的表面積為S2,S-S25-2

Uy」

貝S-S25-2

Uy」

貝A34--9D.9-2C答案D解析易知RtZXABC的外接圓直徑為AC,所以半徑長(zhǎng)為|,設(shè)外接球半徑為R,則尸=(1)2+倒2=¥,???51=4兀/?2=34兀,設(shè)氐△ABC的內(nèi)切圓半徑為r,則;X(3+4+5>r=gx3X4,:.r=\,V2r=2<3,故該直三棱柱內(nèi)部半徑最大的球的半徑為『,/.52=47tr=47i,.5_34兀_17??豆=G=T.已知在三棱錐C-AB。中,△A3。是等邊三角形,BCLCD,平面平面3CQ,若該三棱錐的外接球表面積為4n,則AC等于()A亞R逅「、cd3答案c解析根據(jù)題意,畫(huà)出圖形,如圖,取BO的中點(diǎn)凡連接CF,AF,設(shè)該外接球球心為O,半徑為上貝《4兀/?2=4兀,解得R=],可知球心。為正△4B。的中心,連接0£),所以。0=1,A0=l,所以正△ABO的邊長(zhǎng)為小,1因?yàn)锽CVCD,所以 2'因?yàn)槠矫鍭BOJ_平面BCD,考點(diǎn)二補(bǔ)形法.(2022?廣州模擬)已知直三棱柱ABC—4B6的6個(gè)頂點(diǎn)都在球。的球面上.若4BHC,4B=1,4c=3,44尸加,則球O的體積為( )

A.87t C.16ttD.3^答案D解析在直三棱柱ABC-AiBiCi中,AB_LAC,將直三棱柱ABC-A\B\C\補(bǔ)成長(zhǎng)方體ABDC-AtBiDiCt,如圖所示,所以球0的直徑為2R=、AB2+Ad+AA彳=4,可得R=2,因此球。的體積為丫=平=苧..蹴鞠,又名“蹴球”“蹴圓”等,“蹴”有用腳蹴、踢的含義,類似今日的足球.2006年5月20日,蹴鞠已作為非物質(zhì)文化遺產(chǎn)經(jīng)國(guó)務(wù)院批準(zhǔn)列入第一批國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)名錄.已知某“鞠”的表面上有四個(gè)點(diǎn)A,B,C,D,滿足AB=CO=9cm,8£)=AC=15cm,4O=BC=13cm,則該“鞠”的表面積為()B.B.235ttcm2D.230兀cm?.475 2A.下fcm一「465 )cm-答案A解析將四面體放入長(zhǎng)方體中,四面體各邊可看作長(zhǎng)方體各面的對(duì)角線,如圖所示,則“鞠”的表面積為四面體4—3C。外接球的表面積,即為長(zhǎng)方體外接球的表面積,設(shè)長(zhǎng)方體棱長(zhǎng)為a,b,c,則有/+力2=92,o2+c2=152,fe2+c2=132,設(shè)長(zhǎng)方體外接球半徑為七則有475(2R)2=a2+b2+c2,解得4收=亍,C475 -所以外接球的表面積S=4ti/??=~^7(cnr)..(2022?上饒模擬)在三棱錐P—4BC中,以,平面ABC,且附=AB=2,AB1BCS.BC=4,則三棱錐P-ABC的外接球表面積為.答案247r解析因?yàn)樵谌忮F2一ABC中,以_£平面ABC,ABLBC,不妨將三棱錐放入一個(gè)長(zhǎng)方體中,則長(zhǎng)方體的外接球即為三棱錐的外接球,因?yàn)殚L(zhǎng)方體的體對(duì)角線即為其外接球的直徑,且以=AB=2,BC=4,則長(zhǎng)方體的長(zhǎng)、寬、高分別為4,2,2,所以三棱錐尸一ABC外接球的半徑R=1x嚴(yán)喬不=#,故三棱錐P-ABC外接球的表面積5=4成2=247t.考點(diǎn)三截面法.如圖,圓柱的底面半徑為r,高為h,記圓柱的表面積為S,圓柱外接球的表面積為S2,唔號(hào),則例值為()A.gB.|或1D.;或1答案D、/4/+.2解析???圓柱的表面積$=2兀7+2兀仍,圓柱的外接球的半徑為、一,?,.其外接球的表面積S?=4兀)=兀(47+人2),.Si42nr+2nrh=而=5=兀(4>+4)'即2〃2—5用+37=0,/*2:.(2h—3r)(h—r)=O,則石=Q或石=L已知△4BC是面積為乎的等邊三角形,其頂點(diǎn)均在球。的表面上,當(dāng)點(diǎn)P在球。的表面上運(yùn)動(dòng)時(shí),三棱錐P—ABC的體積的最大值為日產(chǎn),則球。的表面積為( )^32兀-27花一A.16兀B.每- D.4兀答案A解析如圖所示,設(shè)點(diǎn)M為△ABC外接圓的圓心,當(dāng)點(diǎn)P,O,M三點(diǎn)共線時(shí),且尸,M位于點(diǎn)。的異側(cè)時(shí),三棱錐P-ABC的體積取得最大值.因?yàn)椤鰽BC的面積為苧,所以邊長(zhǎng)為3,由于三棱錐P-ABC的體積的最大值為:X乎XPM=乎,得PM=3,易知PM_L平面ABC,則三棱錐「一ABC為正三棱錐,△ABC的外接圓直徑為2AM= =2小,所以4M=小,sin3設(shè)球0的半徑為R,則R2=OA2=AM2+(PM-PO)2=3+(3~R)2,解得R=2,所以球。的表面積S=4ttR2=]6兀(2022?肇慶第二中學(xué)模擬)在半徑為R的球內(nèi)放置一圓柱體,使圓柱體的兩底面圓周上所有的點(diǎn)都在球面上,當(dāng)圓柱體的體積最大時(shí),其高為()A.-j/? B.。迄 dA?答案A解析設(shè)圓柱底面圓半徑為r,高為〃,如圖,則OA=R,OG=專,GA=r,

故%則h=2y]R2-r2,圓柱體積V=itr2-h=Inr^R^—t2,設(shè)鄧2—戶=1,則/=/?2—產(chǎn),所以V=2M(R2-t2),故V'=-6nl2+2nR2=—6n(P—^,n2 n2 n2當(dāng)產(chǎn)=5?時(shí),S=0,當(dāng)戶>了時(shí),S<0,當(dāng)Fvy時(shí),V>0,d2所以當(dāng)尸=^■時(shí),圓柱體積取得最大值,此時(shí)〃=2r=2一個(gè)正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的高為2,底面邊長(zhǎng)為2,則該球的表面積為.答案97r解析如圖所示,。為底面正方形的中心,則OP=2,AB=2,則正四棱錐的外接球的球心O'在O尸上,則外接球的半徑R滿足(2—7?)2+(出)2=/?2,解得/?=-該球的表面積5=4兀/?2=9兀.能力提升練(2022?南昌質(zhì)檢)《九章算術(shù)》中將底面是直角三角形的直三棱柱稱之為“塹堵”,將底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽(yáng)馬”,在如圖所示的塹堵ABC—ABiG中,AAt=AC=5,48=3,BC=4,則在塹堵48C-A|B|G中截掉陽(yáng)馬4一4884后的幾何體的外接球的表面積是()A.507t?125啦兀 __nnC.6 D,200兀答案A解析在塹堵ABC-AiB.Ci中截掉陽(yáng)馬Ct-ABB.Ai后,剩余的幾何體為三棱錐A-BCC\,該幾何體與塹堵ABC-4B1G的外接球是同一個(gè)球,因?yàn)锳8=3,BC=4,AC=5,所以AB2+BC2=AC2,所以N4BC=90。,所以RtZkABC的外接圓直徑為AC=5,所以塹堵ABC-AiBiG的外接球的直徑為2R=、AC2+CG=5?所以R=平,因此,在塹堵4BC-48G中截掉陽(yáng)馬G-A83Al后的幾何體的外接球的表面積是4兀依=50n.12.(多選)我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將正四棱錐稱為方錐.已知半球內(nèi)有一個(gè)方錐,方錐的底面內(nèi)接于半球的底面,方錐的頂點(diǎn)在半球的球面上,若方錐的體積為18,則關(guān)于半球的說(shuō)法正確的是()A.半徑是3 B.體積為18兀C.表面積為277t D.表面積為187t答案ABC解析如圖,△以C是正四棱錐的對(duì)角面,設(shè)半球的半徑為r,4c是半球的直徑,則正四棱1 9錐底面邊長(zhǎng)為也r,棱錐體積為%='X(、「r)2Xr=3,=18,得r=3,2 ?半球體積為%=]兀,=1兀X3?=18兀,表面積為2nX32+nX32=27n.PAOC.(多選)(2022?重慶模擬)己知三棱柱ABC—481G的6個(gè)頂點(diǎn)全部在球。的表面上,AB=AC,NBAC=120。,三棱柱A8C-A|8iG的側(cè)面積為8+4小,則球。的表面積可能是()A.4兀B.8兀C.167rD.32兀答案CD解析設(shè)三棱柱ABC-ABiG的高為〃,A8=AC=a.因?yàn)镹8AC=120。,所以BC=/a,則該三棱柱的側(cè)面積為(2+小)勘=8+4小,故勵(lì)=4.設(shè)N,M分別是三棱柱上、下底面的外心,則三棱柱外接球球心。是MN的中點(diǎn),

設(shè)△A3C的外接圓半徑為r,則例。=,==”后=〃.設(shè)球0的半徑為R,則。02=/?2=/

/s1n倒2=〃2+牛=$+與24,當(dāng)且僅當(dāng)人=2啦時(shí)取等號(hào),故球O的表面積為4兀叱216兀.(2022?西安模擬)A,B,C,。為球面上四點(diǎn),M,N分別是A8,8的中點(diǎn),以MN為直徑的球稱為AB,CC的“伴隨球”,若三棱錐A-BCC的四個(gè)頂點(diǎn)在表面積為647t的球面上,它的兩條邊AB,CD的長(zhǎng)度分別為2市和4小,則AB,CO的伴隨球的體積的取值范圍是.答案總甯]解析由題意知,三棱錐A-BCO的外接球。的半徑為4,故。4=0。=4,且ONLCD,由勾

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論