![2023學年湖南衡陽正源學校高考仿真模擬數(shù)學試卷(含答案解析)_第1頁](http://file4.renrendoc.com/view/1c0a94fb91a03efab30e472b2d8b9d2b/1c0a94fb91a03efab30e472b2d8b9d2b1.gif)
![2023學年湖南衡陽正源學校高考仿真模擬數(shù)學試卷(含答案解析)_第2頁](http://file4.renrendoc.com/view/1c0a94fb91a03efab30e472b2d8b9d2b/1c0a94fb91a03efab30e472b2d8b9d2b2.gif)
![2023學年湖南衡陽正源學校高考仿真模擬數(shù)學試卷(含答案解析)_第3頁](http://file4.renrendoc.com/view/1c0a94fb91a03efab30e472b2d8b9d2b/1c0a94fb91a03efab30e472b2d8b9d2b3.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為虛數(shù)單位,則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若復數(shù)(為虛數(shù)單位)的實部與虛部相等,則的值為()A. B. C. D.3.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.24.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.5.已知復數(shù),則()A. B. C. D.26.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]7.已知復數(shù),則的虛部為()A. B. C. D.18.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.9.()A. B. C. D.10.函數(shù)(且)的圖象可能為()A. B. C. D.11.下列函數(shù)中,既是奇函數(shù),又是上的單調函數(shù)的是()A. B.C. D.12.函數(shù)的大致圖象為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.14.根據(jù)如圖的算法,輸出的結果是_________.15.已知一個圓錐的底面積和側面積分別為和,則該圓錐的體積為________16.內角,,的對邊分別為,,,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設cn=bnan,求數(shù)列18.(12分)已知數(shù)列中,a1=1,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)記,若數(shù)列為遞增數(shù)列,求λ的取值范圍.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線極坐標方程為.若直線交曲線于,兩點,求線段的長.20.(12分)在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.21.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結PC,PB構成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大?。虎谠诶釶C上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.22.(10分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
由共軛復數(shù)的定義得到,通過三角函數(shù)值的正負,以及復數(shù)的幾何意義即得解【題目詳解】由題意得,因為,,所以在復平面內對應的點位于第二象限.故選:B【答案點睛】本題考查了共軛復數(shù)的概念及復數(shù)的幾何意義,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.2.C【答案解析】
利用復數(shù)的除法,以及復數(shù)的基本概念求解即可.【題目詳解】,又的實部與虛部相等,,解得.故選:C【答案點睛】本題主要考查復數(shù)的除法運算,復數(shù)的概念運用.3.A【答案解析】
設點的坐標為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結合,可得到的齊次方程,進而可求出離心率的值.【題目詳解】設點的坐標為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【答案點睛】本題考查雙曲線的離心率,構造的齊次方程是解決本題的關鍵,屬于中檔題.4.C【答案解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【題目詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【答案點睛】本題考查余弦型函數(shù)性質的應用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學生數(shù)形結合、數(shù)學運算的能力,是一道中檔題.5.C【答案解析】
根據(jù)復數(shù)模的性質即可求解.【題目詳解】,,故選:C【答案點睛】本題主要考查了復數(shù)模的性質,屬于容易題.6.B【答案解析】
作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【題目詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【答案點睛】此題考查線性規(guī)劃,根據(jù)可行域結合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.7.C【答案解析】
先將,化簡轉化為,再得到下結論.【題目詳解】已知復數(shù),所以,所以的虛部為-1.故選:C【答案點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.8.D【答案解析】
根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結果.【題目詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【答案點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.9.A【答案解析】
分子分母同乘,即根據(jù)復數(shù)的除法法則求解即可.【題目詳解】解:,故選:A【答案點睛】本題考查復數(shù)的除法運算,屬于基礎題.10.D【答案解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質;2.函數(shù)的圖象.11.C【答案解析】
對選項逐個驗證即得答案.【題目詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調遞增,是奇函數(shù),在上是單調遞增函數(shù),故選項正確;對于,在上單調遞增,在上單調遞增,但,在上不是單調函數(shù),故選項錯誤.故選:.【答案點睛】本題考查函數(shù)的基本性質,屬于基礎題.12.A【答案解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【題目詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【答案點睛】本題考查了拋物線的準線、圓的弦長公式.14.55【答案解析】
根據(jù)該For語句的功能,可得,可得結果【題目詳解】根據(jù)該For語句的功能,可得則故答案為:55【答案點睛】本題考查For語句的功能,屬基礎題.15.【答案解析】
依據(jù)圓錐的底面積和側面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!绢}目詳解】設圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為?!敬鸢更c睛】本題主要考查圓錐的底面積、側面積和體積公式的應用。16.【答案解析】∵,∴,即,∴,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)an=(2)Tn【答案解析】
(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【題目詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【答案點睛】用遞推關系an=Sn-18.(1)(2)【答案解析】
(1)項和轉換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,,令,可證明為遞增數(shù)列,即,即得解【題目詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數(shù)列為遞增數(shù)列,∴,即.令,即.∴為遞增數(shù)列,∴,即的取值范圍為.【答案點睛】本題考查了數(shù)列綜合問題,考查了項和轉換,數(shù)列的單調性,最值等知識點,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.19.【答案解析】
由,化簡得,由,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設,則,根據(jù)弦長公式求解即可.【題目詳解】由,化簡得,又因為,所以直線的直角坐標方程為,因為曲線的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設,則,所以,將,代入上式,整理得.【答案點睛】本題考查參數(shù)方程,極坐標方程的應用,結合弦長公式的運用,屬于中檔題.20.(1),;(2).【答案解析】
(1)利用極坐標和直角坐標的互化公式,即得解;(2)設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【題目詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標是,從而,點的極坐標是.(2)由(1)可知,點的直角坐標為,B的直角坐標為設點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【答案點睛】本題考查了極坐標和參數(shù)方程綜合,考查了極坐標和直角坐標互化,參數(shù)方程的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.21.Ⅰ詳見解析;Ⅱ①,②或.【答案解析】
Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大??;求出平面PBC的法向量,利用線面角的公式求出的值.【題目詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設平面PBC的法向量為y,,則,取,得0,,設平面PCD的法向量b,,則,取,得1,,設二面角的大小為,可知為鈍角,則,.二面角的大小為.設AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【答案點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.22.(1)見解析;(2)【答案解析】
(1)取的中點,證明,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑工程施工合同索賠流程及賠償標準規(guī)范文本
- 2025年度電子工程師研發(fā)項目合作合同
- 2025年度酒店物業(yè)管理合同規(guī)范文本
- 遼寧2024年渤海大學附屬高級中學招聘人筆試歷年參考題庫附帶答案詳解
- 菏澤2025年山東菏澤醫(yī)專附屬醫(yī)院招聘精神科住院醫(yī)師2人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南省住房和城鄉(xiāng)建設廳所屬事業(yè)單位選調筆試歷年參考題庫附帶答案詳解
- 溫州2024年浙江溫州蒼南縣質量技術監(jiān)督檢測院招聘食品檢測工作人員筆試歷年參考題庫附帶答案詳解
- 浙江浙江省國際經(jīng)濟貿(mào)易學會招聘筆試歷年參考題庫附帶答案詳解
- 2025年中國宮燈罩市場調查研究報告
- 2025年中國半自動內圓切片機市場調查研究報告
- 4地球-我們的家園《我們共同的責任》說課稿 -2023-2024學年道德與法治六年級下冊統(tǒng)編版
- 護理交接班改進
- 詩經(jīng)楚辭文學常識單選題100道及答案
- AI輔助的慢性病監(jiān)測與管理系統(tǒng)
- 電路基礎知到智慧樹章節(jié)測試課后答案2024年秋江西職業(yè)技術大學
- 2025年小學蛇年寒假特色作業(yè)
- Unit 6 Is he your grandpa 第一課時 (教學實錄) -2024-2025學年譯林版(三起)(2024)英語三年級上冊
- 湖北省十一校2024-2025學年高三上學期第一次聯(lián)考化學試題 含解析
- 開題報告:鑄牢中華民族共同體意識的學校教育研究
- 《個人所得稅法解讀》課件
- 電腦維修合同三篇
評論
0/150
提交評論