上海市青浦高中2022-2023學(xué)年高一上數(shù)學(xué)期末預(yù)測試題含解析_第1頁
上海市青浦高中2022-2023學(xué)年高一上數(shù)學(xué)期末預(yù)測試題含解析_第2頁
上海市青浦高中2022-2023學(xué)年高一上數(shù)學(xué)期末預(yù)測試題含解析_第3頁
上海市青浦高中2022-2023學(xué)年高一上數(shù)學(xué)期末預(yù)測試題含解析_第4頁
上海市青浦高中2022-2023學(xué)年高一上數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則()A. B.C. D.22.已知在上的減函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.如果AB>0,BC>0,那么直線Ax-By-C=0不經(jīng)過的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限4.為了節(jié)約水資源,某地區(qū)對居民用水實行“階梯水價”制度:將居民家庭全年用水量(取整數(shù))劃分為三檔,水價分檔遞增,其標(biāo)準(zhǔn)如下:階梯居民家庭全年用水量(立方米)水價(元/立方米)其中水費(元/立方米)水資源費(元/立方米)污水處理費(元/立方米)第一階梯0-180(含)52.071.571.36第二階梯181-260(含)74.07第三階梯260以上96.07如該地區(qū)某戶家庭全年用水量為300立方米,則其應(yīng)繳納的全年綜合水費(包括水費、水資源費及污水處理費)合計為元.若該地區(qū)某戶家庭繳納的全年綜合水費合計為1180元,則此戶家庭全年用水量為()A.170立方米 B.200立方米C.220立方米 D.236立方米5.定義在上的函數(shù)滿足,且當(dāng)時,.若關(guān)于的方程在上至少有兩個實數(shù)解,則實數(shù)的取值范圍為A. B.C. D.6.已知點M在曲線上,點N在曲線:上,則|MN|的最小值為()A.1 B.2C.3 D.47.已知集合,或,則()A.或 B.C. D.或8.已知函數(shù)在上存在零點,則的取值范圍為()A. B.C. D.9.已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調(diào)遞增.若實數(shù)a滿足,則a的取值范圍是A. B.C. D.10.已知,,,則的大小關(guān)系為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若,則實數(shù)的取值范圍是__________.12.,的定義域為____________13.已知函數(shù)若互不相等,且,則的取值范圍是14.已知兩定點,,如果動點滿足,則點的軌跡所包圍的圖形的面積等于__________15.已知函數(shù)(且)過定點P,且P點在冪函數(shù)的圖象上,則的值為_________16.函數(shù)y=的單調(diào)遞增區(qū)間是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知冪函數(shù)的圖象過點.(1)求出函數(shù)的解析式,判斷并證明在上的單調(diào)性;(2)函數(shù)是上的偶函數(shù),當(dāng)時,,求滿足時實數(shù)的取值范圍.18.2022年是蘇頌誕辰1001周年,蘇頌發(fā)明的水運儀象臺被譽為世界上最早的天文鐘.水運儀象臺的原動輪叫樞輪,是一個直徑約3.4米的水輪,它轉(zhuǎn)一圈需要30分鐘.如圖,退水壺內(nèi)水面位于樞輪中心下方1.19米處,當(dāng)點P從樞輪最高處隨樞輪開始轉(zhuǎn)動時,打開退水壺出水口,壺內(nèi)水位以每分鐘0.017米的速度下降,將樞輪轉(zhuǎn)動視為勻速圓周運動.以樞輪中心為原點,水平線為x軸建立平面直角坐標(biāo)系,令P點縱坐標(biāo)為,水面縱坐標(biāo)為,P點轉(zhuǎn)動經(jīng)過的時間為x分鐘.(參考數(shù)據(jù):,,)(1)求,關(guān)于x的函數(shù)關(guān)系式;(2)求P點進入水中所用時間的最小值(單位:分鐘,結(jié)果取整數(shù))19.近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入a(單位:萬元)滿足P=3-6,乙城市收益Q與投入a(單位:萬元)滿足Q=a+2,設(shè)甲城市的投入為x(單位:萬元),兩個城市的總收益為f(x)(單位:萬元).(1)當(dāng)甲城市投資50萬元時,求此時公司的總收益;(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?20.已知函數(shù)(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;(2)若f(x)在區(qū)間上的最小值為1,求m的最小值21.已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程有解,求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用同角三角函數(shù)關(guān)系式可求,再應(yīng)用和角正切公式即求.【詳解】∵,,∴,,∴.故選:D.2、B【解析】令,,()若,則函數(shù),減函數(shù),由題設(shè)知為增函數(shù),需,故此時無解()若,則函數(shù)是增函數(shù),則為減函數(shù),需且,可解得綜上可得實數(shù)的取值范圍是故選點睛:已知函數(shù)的單調(diào)性確定參數(shù)的值或范圍要注意以下兩點:(1)若函數(shù)在區(qū)間上單調(diào),則該函數(shù)在此區(qū)間的任意子區(qū)間上也是單調(diào)的;(2)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值;(3)復(fù)合函數(shù)的單調(diào)性,不僅要注意內(nèi)外函數(shù)單調(diào)性對應(yīng)關(guān)系,而且要注意內(nèi)外函數(shù)對應(yīng)自變量取值范圍.3、B【解析】斜率為,截距,故不過第二象限.考點:直線方程.4、C【解析】根據(jù)用戶繳納的金額判定全年用水量少于260,利用第二檔的收費方式計算即可.【詳解】若該用戶全年用水量為260,則應(yīng)繳納元,所以該戶家庭的全年用水量少于260,設(shè)該戶家庭全年用水量為x,則應(yīng)繳納元,解得.故選:C5、C【解析】原問題等價于函數(shù)與的圖象至少有兩個交點【詳解】解:關(guān)于的方程在上至少有兩個實數(shù)解,等價于函數(shù)與的圖象至少有兩個交點,因為函數(shù)滿足,且當(dāng)時,,所以當(dāng)時,,時,,時,,所以的大致圖象如圖所示:因為表示恒過定點,斜率為的直線,所以要使兩個函數(shù)圖象至少有兩個交點,由圖可知只需,即,故選:C6、B【解析】根據(jù)圓的一般方程得出圓的標(biāo)準(zhǔn)方程,并且得圓的圓心和半徑,計算兩圓圓心的距離后就可以求解.【詳解】由題意知:圓:,的坐標(biāo)是,半徑是,圓:,的坐標(biāo)是,半徑是.所以,因此兩圓相離,所以最小值為.故選:B7、A【解析】應(yīng)用集合的并運算求即可.【詳解】由題設(shè),或或.故選:A8、A【解析】根據(jù)零點存在定理及函數(shù)單調(diào)性可知,,解不等式組即可求得的取值范圍.【詳解】因為在上單調(diào)遞增,根據(jù)零點存在定理可得,解得.故選:A【點睛】本題考查了函數(shù)單調(diào)性的判斷,零點存在定理的應(yīng)用,根據(jù)零點所在區(qū)間求參數(shù)的取值范圍,屬于基礎(chǔ)題.9、C【解析】函數(shù)是定義在上的偶函數(shù),∴,等價為),即.∵函數(shù)是定義在上的偶函數(shù),且在區(qū)間單調(diào)遞增,∴)等價為.即,∴,解得,故選項為C考點:(1)函數(shù)的奇偶性與單調(diào)性;(2)對數(shù)不等式.【思路點晴】本題主要考查對數(shù)的基本運算以及函數(shù)奇偶性和單調(diào)性的應(yīng)用,綜合考查函數(shù)性質(zhì)的綜合應(yīng)用根據(jù)函數(shù)的奇偶數(shù)和單調(diào)性之間的關(guān)系,綜合性較強.由偶函數(shù)結(jié)合對數(shù)的運算法則得:,即,結(jié)合單調(diào)性得:將不等式進行等價轉(zhuǎn)化即可得到結(jié)論.10、A【解析】利用利用等中間值區(qū)分各個數(shù)值的大小【詳解】;;故故選A【點睛】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性時要根據(jù)底數(shù)與的大小區(qū)別對待二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先確定函數(shù)單調(diào)性,再根據(jù)單調(diào)性化簡不等式,最后解一元二次不等式得結(jié)果.【詳解】在上單調(diào)遞增,在上單調(diào)遞增,且在R上單調(diào)遞增因此由得故答案為:【點睛】本題考查根據(jù)函數(shù)單調(diào)性解不等式,考查基本分析求解能力,屬中檔題.12、【解析】由,根據(jù)余弦函數(shù)在的圖象可求得結(jié)果.【詳解】由得:,又,,即的定義域為.故答案為:.13、(10,12)【解析】不妨設(shè)a<b<c,作出f(x)的圖象,如圖所示:由圖象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即?lga=lgb,∴l(xiāng)gab=0,則ab=1,∴abc=c,∴abc的取值范圍是(10,12),14、4π【解析】設(shè)點的坐標(biāo)為(則,即(以點的軌跡是以為圓心,2為半徑的圓,所以點的軌跡所包圍的圖形的面積等于4π.即答案為4π15、9【解析】由指數(shù)函數(shù)的性質(zhì)易得函數(shù)過定點,再由冪函數(shù)過該定點求解析式,進而可求.【詳解】由知:函數(shù)過定點,若,則,即,∴,故.故答案為:9.16、【解析】設(shè)函數(shù),再利用復(fù)合函數(shù)的單調(diào)性原理求解.【詳解】解:由題得函數(shù)的定義域為.設(shè)函數(shù),因為函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,函數(shù)是單調(diào)遞減函數(shù),由復(fù)合函數(shù)的單調(diào)性得函數(shù)y=的單調(diào)遞增區(qū)間為.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),在上是增函數(shù);證明見解析(2)【解析】(1)冪函數(shù)的解析式為,將點代入即可求出解析式,再利用函數(shù)的單調(diào)性定義證明單調(diào)性即可.(2)由(1)可得當(dāng)時,在上是增函數(shù),利用函數(shù)為偶函數(shù)可得在上是減函數(shù),由,,從而可得,解不等式即可.【詳解】(1)設(shè)冪函數(shù)的解析式為,將點代入解析式中得,解得,所以,所求冪函數(shù)的解析式為.冪函數(shù)在上是增函數(shù).證明:任取,且,則,因為,,所以,即冪函數(shù)在上是增函數(shù)(2)當(dāng)時,,而冪函數(shù)在上是增函數(shù),所以當(dāng)時,在上是增函數(shù).又因為函數(shù)是上的偶函數(shù),所以在上是減函數(shù).由,可得:,即,所以滿足時實數(shù)的取值范圍為.【點睛】本題考查了冪函數(shù)、函數(shù)單調(diào)性的定義,利用函數(shù)的奇偶性、單調(diào)性解不等式,屬于基礎(chǔ)題.18、(1),(2)13分鐘【解析】(1)按照題目所給定的坐標(biāo)系分別寫出和的方程即可;(2)根據(jù)零點存在定理判斷即可.【小問1詳解】可設(shè),∵轉(zhuǎn)動的周期為30分鐘,∴,∵樞輪的直徑為3.4米,∴,∵點P的初始位置為最高點,∴,∴,∵退水壺內(nèi)水面位于樞輪中心下方1.19米處,∴水面的初始縱坐標(biāo)為,∵水位以每分鐘0.017米速度下降,∴;【小問2詳解】P點進入水中,則,即∴作出和的大致圖像,顯然在內(nèi)存在一個交點令,∵,,∴P點進入水中所用時間的最小值為13分鐘;綜上,,,P點進入水中所用時間的最小值為13分鐘.19、(1)43.5(萬元);(2)甲城市投資72萬元,乙城市投資48萬元.【解析】(1)直接代入收益公式進行計算即可.(2)由收益公式寫出f(x)=-x+3+26,令t=,將函數(shù)轉(zhuǎn)為關(guān)于t的二次函數(shù)求最值即可.【詳解】(1)當(dāng)x=50時,此時甲城市投資50萬元,乙城市投資70萬元,所以公司的總收益為3-6+×70+2=43.5(萬元).(2)由題知,甲城市投資x萬元,乙城市投資(120-x)萬元,所以f(x)=3-6+(120-x)+2=-x+3+26,依題意得解得40≤x≤80.故f(x)=-x+3+26(40≤x≤80).令t=,則t∈[2,4],所以y=-t2+3t+26=-(t-6)2+44.當(dāng)t=6,即x=72萬元時,y的最大值為44萬元,所以當(dāng)甲城市投資72萬元,乙城市投資48萬元時,總收益最大,且最大收益為44萬元.【點睛】本題考查函數(shù)模型的應(yīng)用,考查函數(shù)最值的求解,屬于基礎(chǔ)題.20、(1).,

(2)【解析】(1)直接利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果(2)利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果【詳解】(1)由題意,函數(shù),==,所以的最小正周期:由,解得即函數(shù)的單調(diào)遞減區(qū)間是

(2)由(1)知,因為,所以要使f(x)在區(qū)間上的最小值為1,即在區(qū)間上的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論