版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.某圓的一條弦長等于半徑,則這條弦所對的圓心角為A. B.C. D.12.若,且,則的值是A. B.C. D.3.三個數(shù),,的大小順序是A. B.C. D.4.已知三條直線,,的斜率分別為,,,傾斜角分別為.若,則下列關系不可能成立的是()A. B.C. D.5.設,,則()A. B.C. D.6.若函數(shù),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則()A.1 B.C.2 D.37.一個機器零件的三視圖如圖所示,其中側(cè)視圖是一個半圓與邊長為的正方形,俯視圖是一個半圓內(nèi)切于邊長為的正方形.若該機器零件的表面積為,則的值為A.4 B.2C.8 D.68.設和兩個集合,定義集合,且,如果,,那么A. B.C. D.9.已知函數(shù)(其中)的最小正周期為,則()A. B.C.1 D.10.已知,求的值()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.函數(shù)的最大值是____________.12.設x、y滿足約束條件,則的最小值是________.13.函數(shù)(其中,,)的圖象如圖所示,則函數(shù)的解析式為__________14.已知函數(shù)是R上的減函數(shù),則實數(shù)a的取值范圍為_______15.已知一容器中有兩種菌,且在任何時刻兩種菌的個數(shù)乘積為定值,為了簡單起見,科學家用來記錄菌個數(shù)的資料,其中為菌的個數(shù),現(xiàn)有以下幾種說法:①;②若今天值比昨天的值增加1,則今天的A菌個數(shù)比昨天的A菌個數(shù)多10;③假設科學家將B菌的個數(shù)控制為5萬,則此時(注:)則正確的說法為________.(寫出所有正確說法的序號)三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.英國數(shù)學家泰勒發(fā)現(xiàn)了如下公式:,其中,此公式有廣泛的用途,例如利用公式得到一些不等式:當時,,.(1)證明:當時,;(2)設,若區(qū)間滿足當定義域為時,值域也為,則稱為的“和諧區(qū)間”.(i)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由;(ii)時,是否存在“和諧區(qū)間”?若存在,求出的所有“和諧區(qū)間”,若不存在,請說明理由.17.函數(shù)的部分圖象如圖所示.(1)求A,,的值;(2)將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若,且,求的值.18.為宣傳2022年北京冬奧會,某公益廣告公司擬在一張矩形海報紙(記為矩形,如圖)上設計三個等高的宣傳欄(欄面分別為一個等腰三角形和兩個全等的直角梯形),宣傳欄(圖中陰影部分)的面積之和為.為了美觀,要求海報上所有水平方向和豎直方向的留空寬度均為.設直角梯形的高為.(1)當時,求海報紙的面積;(2)為節(jié)約成本,應如何選擇海報紙的尺寸,可使用紙量最少(即矩形的面積最?。??19.拋擲兩顆骰子,計算:(1)事件“兩顆骰子點數(shù)相同”的概率;(2)事件“點數(shù)之和小于7”概率;(3)事件“點數(shù)之和等于或大于11”的概率.20.已知函數(shù)f(x)=Asin(ωx+φ)的圖象的一部分如圖所示(1)求函數(shù)f(x)的解析式;(2)當時,求函數(shù)y=f(x)+f(x+2)的最大值與最小值及相應的x值21.已知函數(shù)的部分圖象如圖所示(1)求的解析式;(2)將圖象上所有點的橫坐標縮短為原來的(縱坐標不變),再將所得圖象向右平移個單位長度,得到函數(shù)的圖象.若在區(qū)間上不單調(diào),求的取值范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】直接利用已知條件,轉(zhuǎn)化求解弦所對的圓心角即可.【詳解】圓的一條弦長等于半徑,故由此弦和兩條半徑構成的三角形是等邊三角形,所以弦所對的圓心角為.故選C.【點睛】本題考查扇形圓心角的求法,是基本知識的考查.2、B【解析】由已知利用同角三角函數(shù)基本關系式可求,的值,即可得解【詳解】由題意,知,且,所以,則,故選B【點睛】本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,其中解答中熟練應用同角三角函數(shù)的基本關系式,準確求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.3、A【解析】由指數(shù)函數(shù)和對數(shù)函數(shù)單調(diào)性得出范圍,從而得出結(jié)果【詳解】,,;故選A【點睛】本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,熟記函數(shù)性質(zhì)是解題的關鍵,是基礎題.4、D【解析】根據(jù)直線的斜率與傾斜角的關系即可求解.【詳解】解:由題意,根據(jù)直線的斜率與傾斜角的關系有:當或時,或,故選項B可能成立;當時,,故選項A可能成立;當時,,故選項C可能成立;所以選項D不可能成立.故選:D.5、D【解析】解出不等式,然后可得答案.【詳解】因為,所以故選:D6、B【解析】根據(jù)以及周期性求得.【詳解】依題意函數(shù),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則,即,解得.故選:B7、A【解析】幾何體為一個正方體與四分之一個球的組合體,所以表面積為,選A點睛:空間幾何體表面積的求法(1)以三視圖為載體的幾何體的表面積問題,關鍵是分析三視圖確定幾何體中各元素之間的位置關系及數(shù)量(2)多面體的表面積是各個面的面積之和;組合體的表面積注意銜接部分的處理(3)旋轉(zhuǎn)體的表面積問題注意其側(cè)面展開圖的應用8、D【解析】根據(jù)的定義,可求出,,然后即可求出【詳解】解:,;∴.故選D.【點睛】考查描述法的定義,指數(shù)函數(shù)的單調(diào)性,正弦函數(shù)的值域,屬于基礎題9、D【解析】根據(jù)正弦型函數(shù)的最小正周期求ω,從而可求的值.【詳解】由題可知,,∴.故選:D.10、A【解析】利用同角三角函數(shù)的基本關系,即可得到答案;【詳解】,故選:A二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】把函數(shù)化為的形式,然后結(jié)合輔助角公式可得【詳解】由已知,令,,,則,所以故答案為:12、-6【解析】先根據(jù)約束條件畫出可行域,再利用的幾何意義求最值,只需求出直線過可行域內(nèi)的點時,從而得到的最小值即可【詳解】解:由得,作出不等式組對應的平面區(qū)域如圖(陰影部分ABC):平移直線,由圖象可知當直線,過點A時,直線截距最大,此時z最小,由得,即,代入目標函數(shù),得∴目標函數(shù)的最小值是﹣6故答案為:【點睛】本題考查簡單線性規(guī)劃問題,屬中檔題13、【解析】如圖可知函數(shù)的最大值,當時,代入,,當時,代入,,解得則函數(shù)的解析式為14、【解析】由已知結(jié)合分段函數(shù)的性質(zhì)及一次函數(shù)的性質(zhì),列出關于a的不等式,解不等式組即可得解.【詳解】因為函數(shù)是R上的減函數(shù)所以需滿足,解得,即所以實數(shù)a的取值范圍為故答案為:15、③【解析】對于①通過取特殊值即可排除,對于②③直接帶入計算即可.【詳解】當nA=1時,PA=0,故①錯誤;若PA=1,則nA=10,若PA=2,則nA=100,故②錯誤;B菌的個數(shù)為nB=5×104,∴,∴.又∵,∴故選③三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)證明見解析(2)(i)不存在“和諧區(qū)間”,理由見解析(ii)存在,有唯一的“和諧區(qū)間”【解析】(1)利用來證得結(jié)論成立.(2)(i)通過證明方程只有一個實根來判斷出此時不存在“和諧區(qū)間”.(ii)對的取值進行分類討論,結(jié)合的單調(diào)性以及(1)的結(jié)論求得唯一的“和諧區(qū)間”.【小問1詳解】由已知當時,,得,所以當時,.【小問2詳解】(i)時,假設存在,則由知,注意到,故,所以在單調(diào)遞增,于是,即是方程的兩個不等實根,易知不是方程的根,由已知,當時,,令,則有時,,即,故方程只有一個實根0,故不存在“和諧區(qū)間”.(ii)時,假設存在,則由知若,則由,知,與值域是矛盾,故不存在“和諧區(qū)間”,同理,時,也不存在,下面討論,若,則,故最小值為,于是,所以,所以最大值為2,故,此時的定義域為,值域為,符合題意.若,當時,同理可得,舍去,當時,在上單調(diào)遞減,所以,于是,若即,則,故,與矛盾;若,同理,矛盾,所以,即,由(1)知當時,,因為,所以,從而,,從而,矛盾,綜上所述,有唯一的“和諧區(qū)間”.【點睛】對于“新定義”的題目,關鍵是要運用新定義的知識以及原有的數(shù)學知識來進行求解.本題有兩個“新定義”,一個是泰勒發(fā)現(xiàn)的公式,另一個是“和諧區(qū)間”.泰勒發(fā)現(xiàn)的公式可以直接用于證明,“和諧區(qū)間”可轉(zhuǎn)化為函數(shù)的單調(diào)性來求解.17、(1),,(2)或【解析】(1)根據(jù)函數(shù)的部分圖象即可求出A,,然后代入點,由即可求出的值;(2)根據(jù)三角函數(shù)的圖象變換先求出函數(shù)的解析式,然后利用,結(jié)合即可確定的值.小問1詳解】解:由圖可知,,,所以,即,所以.將點代入得,,又,所以;【小問2詳解】解:由(1)知,由題意有,所以,即,因為,所以,所以或,即或,所以的值為或.18、(1)(2)當海報紙寬為,長為,可使用紙量最少【解析】(1)根據(jù)已知條件,先求出梯形長的底邊,再分別求出,,即可求解;(2)根據(jù)已知條件,結(jié)合基本不等式的公式,即可求解【小問1詳解】宣傳欄(圖中陰影部分)的面積之和為,直角梯形的高為,則梯形長的底邊,海報上所有水平方向和豎直方向的留空寬度均為,,,故海報面積為【小問2詳解】直角梯形的高為,宣傳欄(圖中陰影部分)的面積之和為,,海報上所有水平方向和豎直方向的留空寬度均為,海報寬,海報長,故,當且僅當,即,故當海報紙寬為,長為,可使用紙量最少19、(1);(2);(3)【解析】(1)根據(jù)所有的基本事件的個數(shù)為,而所得點數(shù)相同的情況有種,從而求得事件“兩顆骰子點數(shù)相同”的概率;(2)根據(jù)所有的基本事件的個數(shù),求所求的“點數(shù)之和小于”的基本事件的個數(shù),最后利用概率計算公式求解即可;(3)根據(jù)所有的基本事件的個數(shù),求所求的“點數(shù)之和等于或大于”的基本事件的個數(shù),最后利用概率計算公式求解即可試題解析:拋擲兩顆骰子,總的事件有個.(1)記“兩顆骰子點數(shù)相同”為事件,則事件有6個基本事件,∴(2)記“點數(shù)之和小于7”事件,則事件有15個基本事件,∴(3)記“點數(shù)之和等于或大于11”為事件,則事件有3個基本事件,∴.考點:古典概型.20、(1)(2),,,【解析】試題分析:(1)由圖象知,,從而可求得,繼而可求得;(2)利用三角函數(shù)間的關系可求得,利用余弦函數(shù)的性質(zhì)可求得時的最大值與最小值及相應的值試題解析::(1)由圖象知,∴∴圖象過點,則,∵,∴,于是有(2).∵,∴當,即時,;當,即時,考點:(1)由的部分圖象求其解析式;(2)正弦函數(shù)的定義域和值域.【方法點晴】本題考查由的部分圖象確定其解析式,考查余弦函數(shù)的性質(zhì),考查規(guī)范分析與解答的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民間借貸論文文獻綜述與綜述寫作合同
- 2025年度配套服務用房租賃合同解除協(xié)議
- 二零二五年度木板行業(yè)人才培養(yǎng)與技術交流合同
- 二零二五年度木門產(chǎn)品線上線下營銷推廣合同范本
- 2025年度冷鏈運輸車輛租賃及運輸服務合同3篇
- 二零二五年度合伙經(jīng)營圖書書店合同書模板2篇
- 2025年建筑用磚采購與質(zhì)量控制管理合同3篇
- 二零二五年度排水溝施工工程進度款支付及結(jié)算合同
- 課題申報參考:農(nóng)村父母養(yǎng)育倦怠所致兒童手游依賴之危害及其矯正機制研究
- 二零二五版耐火材料行業(yè)環(huán)保設施建設合同4篇
- 電纜擠塑操作手冊
- 浙江寧波鄞州區(qū)市級名校2025屆中考生物全真模擬試卷含解析
- 2024-2025學年廣東省深圳市南山區(qū)監(jiān)測數(shù)學三年級第一學期期末學業(yè)水平測試試題含解析
- IATF16949基礎知識培訓教材
- 【MOOC】大學生創(chuàng)新創(chuàng)業(yè)知能訓練與指導-西北農(nóng)林科技大學 中國大學慕課MOOC答案
- 勞務派遣公司員工考核方案
- 基礎生態(tài)學-7種內(nèi)種間關系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術》課件 第3講 阻燃基本理論
- 2024-2030年中國黃鱔市市場供需現(xiàn)狀與營銷渠道分析報告
- 新人教版九年級化學第三單元復習課件
評論
0/150
提交評論