2022-2023學(xué)年北京市第一五九中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2022-2023學(xué)年北京市第一五九中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2022-2023學(xué)年北京市第一五九中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2022-2023學(xué)年北京市第一五九中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2022-2023學(xué)年北京市第一五九中學(xué)高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.圓與直線相交所得弦長為()A.1 B.C.2 D.22.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象為1,則b的象為A.1,2中的一個 B.1,2C.2 D.無法確定3.角的終邊過點,則等于A. B.C. D.4.已知,則函數(shù)()A. B.C. D.5.一個三棱錐的正視圖和俯視圖如圖所示,則該三棱錐的側(cè)視圖可能為A. B.C. D.6.已知冪函數(shù)的圖象過點,則該函數(shù)的解析式為()A. B.C. D.7.已知函數(shù),則下列判斷正確的是A.函數(shù)是奇函數(shù),且在R上是增函數(shù)B.函數(shù)偶函數(shù),且在R上是增函數(shù)C.函數(shù)是奇函數(shù),且在R上是減函數(shù)D.函數(shù)是偶函數(shù),且在R上是減函數(shù)8.已知函數(shù)在上是增函數(shù),則的取值范圍是()A. B.C. D.9.下列函數(shù)中為奇函數(shù)的是()A. B.C. D.10.已知函數(shù)fx=3xA.(0,1) B.(1,2)C.(2,3) D.(3,4)11.已知命題p:?x∈R,x2+2x<0,則A.?x∈R,x2+2x≤0 B.?x∈RC.?x∈R,x2+2x≥0 D.?x∈R12.已知點,直線,則點A到直線l的距離為()A.1 B.2C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.將函數(shù)y=sin2x+π4的圖象上各點的縱坐標不變,橫坐標伸長到原來的14.在中,,,且在上,則線段的長為______15.若()與()互為相反數(shù),則的最小值為______.16.用二分法求方程x2=2的正實根的近似解(精確度0.001)時,如果我們選取初始區(qū)間是[1.4,1.5],則要達到精確度至少需要計算的次數(shù)是______________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.函數(shù)(1)解不等式;(2)若方程有實數(shù)解,求實數(shù)的取值范圍18.已知函數(shù)f(x)=2sin(2x+)(x∈R)(1)求f(x)的最小正周期:(2)求不等式成立的x的取值集合.(3)求x∈的最大值和最小值.19.計算:(1);(2)已知,求.20.計算(1)(2)21.如圖,直三棱柱的底面是邊長為2的正三角形,分別是的中點(1)證明:平面平面;(2)若直線與平面所成的角為,求三棱錐的體積22.求值:(1)(2)2log310+log30.81

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】利用垂徑定理可求弦長.【詳解】圓的圓心坐標為,半徑為,圓心到直線的距離為,故弦長為:,故選:D.2、A【解析】根據(jù)映射中象與原象定義,元素與元素的對應(yīng)關(guān)系即可判斷【詳解】映射f:A→B,其中A={a,b},B={1,2}已知a的象為1,根據(jù)映射的定義,對于集合A中的任意一個元素在集合B中都有唯一的元素和它對應(yīng),可得b=1或2,所以選A【點睛】本題考查了集合中象與原象的定義,關(guān)于對應(yīng)關(guān)系的理解.注意A集合中的任意元素在集合B中必須有對應(yīng),屬于基礎(chǔ)題3、B【解析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.4、A【解析】根據(jù),令,則,代入求解.【詳解】因為已知,令,則,則,所以,‘故選:A5、D【解析】由幾何體的正視圖和俯視圖可知,三棱錐的頂點在底面內(nèi)的射影在底面棱上,則原幾何體如圖所示,從而側(cè)視圖為D.故選D6、C【解析】設(shè)出冪函數(shù)的解析式,根據(jù)點求得解析式.【詳解】設(shè),依題意,所以.故選:C7、A【解析】求出的定義域,判斷的奇偶性和單調(diào)性,進而可得解.【詳解】的定義域為R,且;∴是奇函數(shù);又和都是R上的增函數(shù);是R上的增函數(shù)故選A【點睛】本題考查奇偶性的判斷,考查了指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題8、C【解析】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍【詳解】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則當(dāng)x∈[2,+∞)時,x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)即,f(2)=4+a>0解得﹣4<a≤4故選C【點睛】本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵9、D【解析】利用奇函數(shù)的定義逐個分析判斷【詳解】對于A,定義域為,因為,所以是偶函數(shù),所以A錯誤,對于B,定義域為,因為,且,所以是非奇非偶函數(shù),所以B錯誤,對于C,定義域為,因為定義域不關(guān)于原點對稱,所以是非奇非偶函數(shù),所以C錯誤,對于D,定義域為,因為,所以是奇函數(shù),所以D正確,故選:D10、C【解析】根據(jù)導(dǎo)數(shù)求出函數(shù)在區(qū)間上單調(diào)性,然后判斷零點區(qū)間.【詳解】解:根據(jù)題意可知3x和-log2∴f(x)在(0,+∞而f(1)=3-0=3>0f(2)=f(3)=1-∴有函數(shù)的零點定理可知,fx零點的區(qū)間為(2故選:C11、C【解析】根據(jù)特稱命題否定是全稱命題即可得解.【詳解】把存在改為任意,把結(jié)論否定,?p為?x∈R,x2故選:C12、C【解析】利用點到直線的距離公式計算即可.【詳解】解:點,直線,則點A到直線l的距離,故選:C.【點睛】點到直線的距離.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、f【解析】利用三角函數(shù)圖象的平移和伸縮變換即可得正確答案.【詳解】函數(shù)y=sin2x+π得到y(tǒng)=sin再向右平移π4個單位,得到y(tǒng)=故最終所得到的函數(shù)解析式為:fx故答案為:fx14、1【解析】∵,∴,∴,∵且在上,∴線段為的角平分線,∴,以A為原點,如圖建立平面直角坐標系,則,D∴故答案為115、2【解析】有題設(shè)得到,利用基本不等式求得最小值.【詳解】由題知,,則,,則,當(dāng)且僅當(dāng)時等號成立,故答案為:216、7【解析】設(shè)至少需要計算n次,則n滿足,即,由于,故要達到精確度要求至少需要計算7次三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)由,根據(jù)對數(shù)的單調(diào)性可得,然后解指數(shù)不等式即可.(2)由實數(shù)根,化為有實根,令,有正根即可,對稱軸,開口向上,只需即可求解.【詳解】(1)由,即,所以,,解得所以不等式的解集為.(2)由實數(shù)根,即有實數(shù)根,所以有實根,兩邊平方整理可得令,且,由題意知有大于根即可,即,令,,故故.故實數(shù)的取值范圍.【點睛】本題考查了利用對數(shù)的單調(diào)性解不等式、根據(jù)對數(shù)型方程的根求參數(shù)的取值范圍,屬于中檔題.18、(1)(2)(3)最大值為2,最小值-1【解析】(1)利用正弦函數(shù)的周期即可求得;(2)先求出的解析式,再根據(jù)正弦函數(shù)的圖像性質(zhì)求解不等式;(3)根據(jù)x∈,求得,再根據(jù)正弦函數(shù)的圖像性質(zhì)可得函數(shù)f(x)在的最大值和最小值.【小問1詳解】,∴f(x)的最小正周期為;【小問2詳解】∵∴∴∴不等式成立的的取值集合為【小問3詳解】∵,∴,∴,-∴﹣1≤≤2∴當(dāng),即時,f(x)的最小值為﹣1;當(dāng),即時,f(x)的最大值為2.19、(1);(2).【解析】(1)根據(jù)對數(shù)的運算法則和對數(shù)恒等式,即可求解;(2)根據(jù)同角三角函數(shù)關(guān)系,由已知可得,代入所求式子,即可求解.【詳解】(1)原式;(2)∵∴∴.20、(1)6(2)【解析】(1)將根式轉(zhuǎn)化為分數(shù)指數(shù)冪,然后根據(jù)冪的運算性質(zhì)即可化簡求值;(2)利用對數(shù)的運算性質(zhì)即可求解.【小問1詳解】解:;【小問2詳解】解:.21、(Ⅰ)見解析;(Ⅱ).【解析】(1)由面面垂直的判定定理很容易得結(jié)論;(2)所求三棱錐底面積容易求得,是本題轉(zhuǎn)化為求三棱錐的高,利用直線與平面所成的角為,作出線面角,進而可求得的值,則可得的長試題解析:(1)如圖,因為三棱柱是直三棱柱,所以,又是正三角形的邊的中點,所以又,因此平面而平面,所以平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論