2022年山東省濟寧市魚臺縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2022年山東省濟寧市魚臺縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2022年山東省濟寧市魚臺縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2022年山東省濟寧市魚臺縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2022年山東省濟寧市魚臺縣九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余17頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知為常數(shù),點在第二象限,則關(guān)于的方程根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷2.二次函數(shù)y=+2的頂點是()A.(1,2) B.(1,?2) C.(?1,2) D.(?1,?2)3.如今網(wǎng)上購物已經(jīng)成為一種時尚,某網(wǎng)店“雙十一”全天交易額逐年增長,2015年交易額為40萬元,2017年交易額為48.4萬元,設(shè)2015年至2017年“雙十一”交易額的年平均增長率為,則根據(jù)題意可列方程為()A. B.C. D.4.如圖,在矩形中,,對角線相交于點,垂直平分于點,則的長為()A.4 B. C.5 D.5.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的兩不相等的實數(shù)根,且,則m的值是()A.或3 B.﹣3 C. D.6.下列各點中,在反比例函數(shù)圖象上的是()A.(3,1) B.(-3,1) C.(3,) D.(,3)7.若均為銳角,且,則().A. B.C. D.8.如圖,BD是⊙O的直徑,圓周角∠A=30,則∠CBD的度數(shù)是()A.30 B.45 C.60 D.809.在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是()A. B.C. D.10.如果5x=6y,那么下列結(jié)論正確的是()A. B. C. D.11.如圖,四邊形ABCD內(nèi)接于⊙O,連接OB、OD,若∠BOD=∠BCD,則∠A的度數(shù)為()A.60° B.70° C.50° D.45°12.已知△ABC與△DEF相似且對應(yīng)周長的比為4:9,則△ABC與△DEF的面積比為A.2:3 B.16:81C.9:4 D.4:9二、填空題(每題4分,共24分)13.2018年我國新能源汽車保有量居世界前列,2016年和2018年我國新能源汽車保有量分別為51.7萬輛和261萬輛.設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為______.14.若正六邊形的邊長為2,則此正六邊形的邊心距為______.15.如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點A為圓心,AB長為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長為半徑作弧,兩弧交于點E,射線AE與BC于F,過點F作FG⊥AC于G,則FG的長為______.16.如圖,AB為半圓的直徑,點D在半圓弧上,過點D作AB的平行線與過點A半圓的切線交于點C,點E在AB上,若DE垂直平分BC,則=______.17.若一個圓錐的側(cè)面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的側(cè)面面積為_____cm2(結(jié)果保留π).18.如圖,已知等邊的邊長為,,分別為,上的兩個動點,且,連接,交于點,則的最小值_______.三、解答題(共78分)19.(8分)如圖,大圓的弦AB、AC分別切小圓于點M、N.(1)求證:AB=AC;(2)若AB=8,求圓環(huán)的面積.20.(8分)某商店將成本為每件60元的某商品標(biāo)價100元出售.(1)為了促銷,該商品經(jīng)過兩次降低后每件售價為81元,若兩次降價的百分率相同,求每次降價的百分率;(2)經(jīng)調(diào)查,該商品每降價2元,每月可多售出10件,若該商品按原標(biāo)價出售,每月可銷售100件,那么當(dāng)銷售價為多少元時,可以使該商品的月利潤最大?最大的月利潤是多少?21.(8分)已知四邊形ABCD的四個頂點都在⊙O上,對角線AC和BD交于點E.(1)若∠BAD和∠BCD的度數(shù)之比為1:2,求∠BCD的度數(shù);(2)若AB=3,AD=5,∠BAD=60°,點C為劣弧BD的中點,求弦AC的長;(3)若⊙O的半徑為1,AC+BD=3,且AC⊥BD.求線段OE的取值范圍.22.(10分)為了測量山坡上的電線桿的高度,數(shù)學(xué)興趣小組帶上測角器和皮尺來到山腳下,他們在處測得信號塔頂端的仰角是,信號塔底端點的仰角為,沿水平地面向前走100米到處,測得信號塔頂端的仰角是,求信號塔的高度.(結(jié)果保留整數(shù))23.(10分)如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.24.(10分)已知在平面直角坐標(biāo)系中位置如圖所示.(1)畫出繞點按順時針方向旋轉(zhuǎn)后的;(2)求點旋轉(zhuǎn)到點所經(jīng)過的路線長(結(jié)果保留).25.(12分)如圖,平行四邊形ABCD的頂點A在y軸上,點B、C在x軸上;OA、OB長是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個根,且OA>OB,BC=6;(1)寫出點D的坐標(biāo);(2)若點E為x軸上一點,且S△AOE=,①求點E的坐標(biāo);②判斷△AOE與△AOD是否相似并說明理由;(3)若點M是坐標(biāo)系內(nèi)一點,在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.26.在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.(1).從A、D、E、F四點中任意取一點,以所取的這一點及B、C為頂點三角形,則所畫三角形是等腰三角形的概率是;(2).從A、D、E、F四點中先后任意取兩個不同的點,以所取的這兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率(用樹狀圖或列表求解).

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)判別式即可求出答案.【詳解】解:由題意可知:,

∴,

故選:B.【點睛】本題考查的是一元二次方程根的判別式,解題的關(guān)鍵是熟練運用根的判別式,本題屬于基礎(chǔ)題型.2、C【分析】因為頂點式y(tǒng)=a(x-h)2+k,其頂點坐標(biāo)是(h,k),即可求出y=+2的頂點坐標(biāo).【詳解】解:∵二次函數(shù)y=+2是頂點式,∴頂點坐標(biāo)為:(?1,2);故選:C.【點睛】此題主要考查了利用二次函數(shù)頂點式求頂點坐標(biāo),此題型是中考中考查重點,同學(xué)們應(yīng)熟練掌握.3、C【分析】由2015年至2017年“雙十一”交易額的年平均增長率為x,根據(jù)2015年及2017年該網(wǎng)店“雙十一”全天交易額,即可得出關(guān)于x的一元二次方程,從而得出結(jié)論.【詳解】解:由2015年至2017年“雙十一”交易額的年平均增長率為x,根據(jù)題意得:.故選C.【點睛】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列一元二次方程是解題的關(guān)鍵.4、B【分析】由矩形的性質(zhì)和線段垂直平分線的性質(zhì)證出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故選:B.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.5、C【分析】先利用判別式的意義得到m>-,再根據(jù)根與系數(shù)的關(guān)系的x1+x2=-(2m+1),x1x2=m2-1,則(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解關(guān)于m的方程,最后確定滿足條件的m的值.【詳解】解:根據(jù)題意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根據(jù)根與系數(shù)的關(guān)系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值為.故選:C.【點睛】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.也考查了根的判別式.6、A【分析】根據(jù)反比例函數(shù)的性質(zhì)可得:反比例函數(shù)圖像上的點滿足xy=3.【詳解】解:A、∵3×1=3,∴此點在反比例函數(shù)的圖象上,故A正確;

B、∵(-3)×1=-3≠3,∴此點不在反比例函數(shù)的圖象上,故B錯誤;C、∵,∴此點不在反比例函數(shù)的圖象上,故C錯誤;D、∵,∴此點不在反比例函數(shù)的圖象上,故D錯誤;故選A.7、D【解析】根據(jù)三角函數(shù)的特殊值解答即可.【詳解】解:∵∠B,∠A均為銳角,且sinA=,cosB=,

∴∠A=30°,∠B=60°.

故選D.【點睛】本題考查特殊角的三角函數(shù)值.8、C【解析】由BD為⊙O的直徑,可證∠BCD=90°,又由圓周角定理知,∠D=∠A=30°,即可求∠CBD.【詳解】解:如圖,連接CD,∵BD為⊙O的直徑,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故選C.【點睛】本題利用了直徑所對的圓周角是直角和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、D【分析】直接利用二次函數(shù)圖象經(jīng)過的象限得出a,b的值取值范圍,進而利用反比例函數(shù)的性質(zhì)得出答案.【詳解】A、拋物線y=ax2+bx開口方向向上,則a>1,對稱軸位于軸的右側(cè),則a,b異號,即b<1.所以反比例函數(shù)y的圖象位于第二、四象限,故本選項錯誤;B、拋物線y=ax2+bx開口方向向上,則a>1,對稱軸位于軸的左側(cè),則a,b同號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項錯誤;C、拋物線y=ax2+bx開口方向向下,則a<1,對稱軸位于軸的右側(cè),則a,b異號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項錯誤;D、拋物線y=ax2+bx開口方向向下,則a<1,對稱軸位于軸的右側(cè),則a,b異號,即b>1.所以反比例函數(shù)y的圖象位于第一、三象限,故本選項正確;故選D.【點睛】本題考查了反比例函數(shù)的圖象以及二次函數(shù)的圖象,要熟練掌握二次函數(shù),反比例函數(shù)中系數(shù)與圖象位置之間關(guān)系.10、A【解析】試題解析:A,可以得出:故選A.11、A【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì),構(gòu)建方程解決問題即可.【詳解】設(shè)∠BAD=x,則∠BOD=2x,∵∠BCD=∠BOD=2x,∠BAD+∠BCD=180°,∴3x=180°,∴x=60°,∴∠BAD=60°.故選:A.【點睛】本題考查圓周角定理,圓內(nèi)接四邊形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.12、B【解析】直接根據(jù)相似三角形周長的比等于相似比,面積比等于相似比的平方解答.【詳解】解:∵△ABC與△DEF相似且對應(yīng)周長的比為4:9,∴△ABC與△DEF的相似比為4:9,∴△ABC與△DEF的面積比為16:81.故選B【點睛】本題考查的是相似三角形的性質(zhì),即相似三角形周長的比等于相似比,面積的比等于相似比的平方.二、填空題(每題4分,共24分)13、【分析】根據(jù)增長率的特點即可列出一元二次方程.【詳解】設(shè)我國2016至2018年新能源汽車保有量年平均增長率為,根據(jù)題意,可列方程為故答案為:.【點睛】此題主要考查一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列出方程.14、.【分析】連接OA、OB,根據(jù)正六邊形的性質(zhì)求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據(jù)勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.15、.【分析】過點F作FH⊥AB于點H,證四邊形AGFH是正方形,設(shè)AG=x,表示出CG,再證△CFG∽△CBA,根據(jù)相似比求出x即可.【詳解】如圖過點F作FH⊥AB于點H,由作圖知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四邊形AGFH是正方形,設(shè)AG=x,則AH=FH=GF=x,∵tan∠C=,∴AC==,則CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴,即,解得x=,∴FG=,故答案為:.【點睛】本題是對幾何知識的綜合考查,熟練掌握三角函數(shù)及相似知識是解決本題的關(guān)鍵.16、【分析】連接CE,過點B作BH⊥CD交CD的延長線于點H,可證四邊形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分線的性質(zhì)可得BE=CE,CD=BD,可證CE=BE=CD=DB,通過證明Rt△ACE≌Rt△HBD,可得AE=DH,通過證明△ACD∽△DHB,可得AC2=AE?BE,由勾股定理可得BE2﹣AE2=AC2,可得關(guān)于BE,AE的方程,即可求解.【詳解】解:連接CE,過點B作BH⊥CD交CD的延長線于點H,∵AC是半圓的切線∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四邊形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直徑,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE?BE,∴BE2﹣AE2=AE?BE,∴BE=AE,∴故答案為:.【點睛】本題考察垂直平分線的性質(zhì)、矩形的性質(zhì)和相似三角形,解題關(guān)鍵是連接CE,過點B作BH⊥CD交CD的延長線于點H,證明出四邊形ACHB是矩形.17、3π【詳解】.故答案為:.18、【分析】根據(jù)題意利用相似三角形判定≌,并求出OC的值即有的最小值從而求解.【詳解】解:如圖∵∴≌∴∴點的路徑是一段弧(以點為圓心的圓上)∴∴,∵∴∴所以的最小值【點睛】本題結(jié)合相似三角形相關(guān)性質(zhì)考查最值問題,利用等邊三角形以及勾股定理相關(guān)等進行分析求解.三、解答題(共78分)19、(1)證明見解析;(2)S圓環(huán)=16π【解析】試題分析:(1)連結(jié)OM、ON、OA由切線長定理可得AM=AN,由垂徑定理可得AM=BM,AN=NC,從而可得AB=AC.(2)由垂徑定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圓環(huán)的面積公式求解即可.(1)證明:連結(jié)OM、ON、OA∵AB、AC分別切小圓于點M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切與小圓⊙O相切于點M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圓環(huán)=πOA2-πOM2=πAM2=16π20、(1)10%;(2)當(dāng)定價為90元時,w最大為4500元.【分析】(1)設(shè)該藥品平均每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(1﹣降價的百分率),則第一次降價后的價格是100(1﹣x),第二次后的價格是100(1﹣x)2,據(jù)此即可列方程求解;(2)銷售定價為每件m元,每月利潤為y元,列出二者之間的函數(shù)關(guān)系式利用配方法求最值即可.【詳解】解:(1)根據(jù)題意得:100(1﹣x)2=81,解得:x1=0.1,x2=1.9,經(jīng)檢驗x2=1.9不符合題意,∴x=0.1=10%,答:每次降價百分率為10%;(2)設(shè)銷售定價為每件m元,每月利潤為y元,則y=(m﹣60)[100+5×(100﹣m)]=﹣5(m﹣90)2+4500,∵a=﹣5<0,∴當(dāng)m=90元時,w最大為4500元.答:(1)下降率為10%;(2)當(dāng)定價為90元時,w最大為4500元.【點睛】本題考查了一元二次方程的應(yīng)用及二次函數(shù)的有關(guān)知識,解題的關(guān)鍵是正確的找到題目中的等量關(guān)系且利用其列出方程.21、(1)120°;(2);(3)≤OE≤【分析】(1)利用圓內(nèi)接四邊形對角互補構(gòu)建方程解決問題即可.(2)將△ACD繞點C逆時針旋轉(zhuǎn)120°得△CBE,根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三點共線,解直角三角形求出即可;(3)由題知AC⊥BD,過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,判斷出四邊形OMEN是矩形,進而得出OE2=2﹣(AC2+BD2),設(shè)AC=m,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.【詳解】解:(1)如圖1中,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴設(shè)∠A=x,∠C=2x,則x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如圖2中,∵A、B、C、D四點共圓,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵點C為弧BD的中點,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,將△ACD繞點C逆時針旋轉(zhuǎn)120°得△CBE,如圖2所示:則∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三點共線,過C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四邊形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)設(shè)AC=m,則BD=3﹣m,∵⊙O的半徑為1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【點睛】本題主要考查的是圓和四邊形的綜合應(yīng)用,掌握圓和四邊形的基本性質(zhì)結(jié)合題目條件分析題目隱藏條件是解題的關(guān)鍵.22、信號塔的高度約為100米.【分析】延長PQ交直線AB于點M,連接AQ,設(shè)PM的長為x米,先由三角函數(shù)得出方程求出PM,再由三角函數(shù)求出QM,得出PQ的長度即可.【詳解】解:延長交直線于點,連接,如圖所示:則,設(shè)的長為米,在中,,∴米,∴(米),在中,∵,∴,解得:,在中,∵,∴(米),∴(米);答:信號塔的高度約為100米.【點睛】本題考查解直角三角形的應(yīng)用、三角函數(shù);由三角函數(shù)得出方程是解決問題的關(guān)鍵,注意掌握當(dāng)兩個直角三角形有公共邊時,先求出這條公共邊的長是解答此類題的一般思路.23、S四邊形ADBC=49(cm2).【分析】根據(jù)直徑所對的角是90°,判斷出△ABC和△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙O于D,判斷出△ADB為等腰直角三角形,根據(jù)勾股定理求出AD、BD、AC的值,再根據(jù)S四邊形ADBC=S△ABD+S△ABC進行計算即可.【詳解】∵AB為直徑,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,則AD=BD=5,則S△ABD=AD?BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),則S△ABC=AC?BC=×6×8=24(cm2),則S四邊形ADBC=S△ABD+S△ABC=25+24=49(cm2).【點睛】本題考查了圓周角定理、三角形的面積等,正確求出相關(guān)的數(shù)值是解題的關(guān)鍵.24、(1)見解析;(2)【分析】(1)根據(jù)畫旋轉(zhuǎn)圖形的方法畫出繞點按順時針方向旋轉(zhuǎn)后的即可;(2)由題意根據(jù)旋轉(zhuǎn)的性質(zhì)利用圓弧公式,即可求出點旋轉(zhuǎn)到點所經(jīng)過的路線長.【詳解】解:(1)的作圖如下,(2)由題意可得:AC=,所以.【點睛】本題考查坐標(biāo)系中點的坐標(biāo)和圖形的旋轉(zhuǎn)以及勾股定理及弧長公式的應(yīng)用,掌握相關(guān)的基本概念是解題關(guān)鍵.25、(1)(6,4);(2)①點E坐標(biāo)或;②△AOE與△AOD相似,理由見解析;(3)存在,F(xiàn)1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的兩個根,OA=4,OB=3,可求點A坐標(biāo),即可求點D坐標(biāo);(2)①設(shè)點E(x,0),由三角形面積公式可求解;②由兩組對邊對應(yīng)成比例,且夾角相等的兩個三角形相似,可證△AOE∽△DAO;(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對角線的情況分別進行求解計算.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論