版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——高一數(shù)學(xué)必修一知識點(diǎn)歸納“為學(xué)當(dāng)求有益于身,為人當(dāng)求有益于世。在家那么有益于家,在鄉(xiāng)那么有益于鄉(xiāng),在邑那么有益于邑,在天下那么有益于天下。斯乃為不虛此生,不虛所學(xué)。不能如此,即讀書畢世,著作等身,那么無益也。下面是我給大家?guī)淼模ǜ咭粩?shù)學(xué))必修一學(xué)識點(diǎn)歸納,夢想大家能夠熱愛!
高一數(shù)學(xué)必修一學(xué)識點(diǎn)歸納1
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素確實(shí)定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的(籃球)隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示(方法):列舉法與描述法。
留神:常用數(shù)集及其記法:XKb1.Com
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N_或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-32},{x|x-32}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的根本關(guān)系
1.“包含”關(guān)系—子集
留神:有兩種可能(1)A是B的一片面,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,那么5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素一致那么兩集合相等”
即:①任何一個集合是它本身的子集。AíA
②真子集:假設(shè)AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③假設(shè)AíB,BíC,那么AíC
④假設(shè)AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數(shù):
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由全體屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由全體屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
高一數(shù)學(xué)必修一學(xué)識點(diǎn)歸納2
1、柱、錐、臺、球的布局特征
(1)棱柱:
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底(面相)似,其好像比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是好像的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面開展圖是一個矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面開展圖是一個扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面開展圖是一個弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):①原來與x軸平行的線段依舊與x平行且長度不變;
②原來與y軸平行的線段依舊與y平行,長度為原來的一半.
4、柱體、錐體、臺體的外觀積與體積
(1)幾何體的外觀積為幾何體各個面的面積的和.
(2)特殊幾何體外觀積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、臺體的體積公式
高一數(shù)學(xué)必修一學(xué)識點(diǎn)歸納3
1.“包含”關(guān)系—子集
留神:有兩種可能(1)A是B的一片面,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,那么5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素一致那么兩集合相等”
即:①任何一個集合是它本身的子集。A(A
②真子集:假設(shè)A(B,且A(B那就說集合A是集合B的真子集,記作AB(或BA)
③假設(shè)A(B,B(C,那么A(C
④假
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年園林景觀照明系統(tǒng)設(shè)計與安裝合同3篇
- 2024年版新員工勞動協(xié)議模板指導(dǎo)樣例版B版
- 音樂教學(xué)工作計劃
- 2021后勤工作總結(jié)范文
- 全年工作計劃集合六篇
- 2021員工辭職報告集錦15篇
- 公司的活動總結(jié)感悟10篇
- 公司技術(shù)員個人工作總結(jié)例文8篇
- 教導(dǎo)工作計劃四篇
- 遠(yuǎn)程培訓(xùn)總結(jié)(15篇)
- 工程倫理分析-切爾諾貝利
- 外墻用水泥纖維板接縫位置開裂問題及處理
- 超星爾雅學(xué)習(xí)通【中國近現(xiàn)代史綱要(首都師范大學(xué))】章節(jié)測試含答案
- 《鼻負(fù)壓置換術(shù)在兒童呼吸道感染中的應(yīng)用及護(hù)理對策研究【論文】3600字》
- 發(fā)動機(jī)機(jī)械系統(tǒng)2.0升ltg-9.66維修指南車下
- 哈爾濱市商品房買賣合同書(最終定稿)
- 信號與系統(tǒng) 西安郵電 習(xí)題答案
- 新疆維吾爾自治區(qū)和田地區(qū)各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)及行政區(qū)劃代碼
- 用人單位終止(解除)勞動合同證明書參考
- 天津工業(yè)大學(xué)《工程力學(xué)》2017-2018-1期末試卷及答案
- 能力素質(zhì),勝任力模型
評論
0/150
提交評論