上海延安中學2022年數(shù)學九上期末監(jiān)測試題含解析_第1頁
上海延安中學2022年數(shù)學九上期末監(jiān)測試題含解析_第2頁
上海延安中學2022年數(shù)學九上期末監(jiān)測試題含解析_第3頁
上海延安中學2022年數(shù)學九上期末監(jiān)測試題含解析_第4頁
上海延安中學2022年數(shù)學九上期末監(jiān)測試題含解析_第5頁
免費預覽已結束,剩余24頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知的半徑為,點到圓心的距離為,則點和的位置關系是()A.點在圓內(nèi) B.點在圓上 C.點在圓外 D.不能確定2.下列關于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④3.已知是方程的一個解,則的值是()A.±1 B.0 C.1 D.-14.已知是一元二次方程的一個根,則等于()A. B.1 C. D.25.拋物線()的部分圖象如圖所示,與軸的一個交點坐標為,拋物線的對稱軸是,下列結論是:①;②;③方程有兩個不相等的實數(shù)根;④;⑤若點在該拋物線上,則,其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個6.關于x的一元二次方程x2+2x﹣a=0的一個根是1,則實數(shù)a的值為()A.0 B.1 C.2 D.37.二次函數(shù)y=x2+4x+3,當0≤x≤時,y的最大值為()A.3 B.7 C. D.8.如圖,在Rt△ABC中,∠ABC=90°,BA=BC.點D是AB的中點,連結CD,過點B作BG⊥CD,分別交CD、CA于點E、F,與過點A且垂直于AB的直線相交于點G,連結DF.給出以下四個結論:①;②點F是GE的中點;③;④,其中正確的結論個數(shù)是()A.4個 B.3個 C.2個 D.1個9.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,則這個方程的兩根為()A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.不確定10.如圖,在△ABC中,DE∥BC,若=,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.若拋物線與軸的交點為與,則拋物線的對稱軸為直線___________.12.如圖,E是?ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.13.如圖,一塊飛鏢游戲板由大小相等的小正方形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),擊中黑色區(qū)域的概率是_____.14.若代數(shù)式5x-5與2x-9的值互為相反數(shù),則x=________.15.如果拋物線經(jīng)過原點,那么______.16.如圖,C,D是拋物線y=(x+1)2﹣5上兩點,拋物線的頂點為E,CD∥x軸,四邊形ABCD為正方形,AB邊經(jīng)過點E,則正方形ABCD的邊長為_____.17.已知:二次函數(shù)y=ax2+bx+c圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是_____.x…﹣1012…y…0343…18.如圖,在反比例函數(shù)的圖象上有點它們的橫坐標依次為2,4,6,8,10,分別過這些點作軸與軸的垂線,圖中所構成的陰影部分的面積從左到右依次為則點的坐標為________,陰影部分的面積________.三、解答題(共66分)19.(10分)如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.(1)求線段OC的長度;(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;(3)若點P在平面內(nèi),當以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標.20.(6分)如圖,在△ABC中,AB=AC,點D、E在邊BC上,∠DAE=∠B=30°,且,那么的值是______.21.(6分)如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線與直線交于,兩點.(1)求拋物線的解析式;(2)坐標軸上是否存在一點,使得是以為底邊的等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.(3)點在軸上且位于點的左側,若以,,為頂點的三角形與相似,求點的坐標.22.(8分)解方程:(1)(2)23.(8分)在平面直角坐標系中,已知,.(1)如圖1,求的值.(2)把繞著點順時針旋轉,點、旋轉后對應的點分別為、.①當恰好落在的延長線上時,如圖2,求出點、的坐標.②若點是的中點,點是線段上的動點,如圖3,在旋轉過程中,請直接寫出線段長的取值范圍.24.(8分)空間任意選定一點,以點為端點作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為,且的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標系內(nèi)進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),軸方向表示的量稱為幾何體碼放的層數(shù);如圖是由若干個單位長方體在空間直角坐標內(nèi)碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數(shù)組記作(1,2,6),如圖的幾何體碼放了排列層,用有序數(shù)組記作(2,3,4).這樣我們就可用每一個有序數(shù)組表示一種幾何體的碼放方式.(1)有序數(shù)組(3,2,4)所對應的碼放的幾何體是_____;(2)圖是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數(shù)組為(___,____,____),組成這個幾何體的單位長方體的個數(shù)為____個;(3)為了進一步探究有序數(shù)組的幾何體的表面積公式,某同學針對若干個單位長方體進行碼放,制作了下列表格:根據(jù)以上規(guī)律,請直接寫出有序數(shù)組的幾何體表面積的計算公式;(用表示)(4)當時,對由個單位長方體碼放的幾何體進行打包,為了節(jié)約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規(guī)律進行探究,請你根據(jù)自己探究的結果直接寫出使幾何體表面積最小的有序數(shù)組,這個有序數(shù)組為(___,___,___),此時求出的這個幾何體表面積的大小為________.(縫隙不計)25.(10分)如圖,點E為□ABCD中一點,EA=ED,∠AED=90o,點F,G分別為AB,BC上的點,連接DF,AG,AD=AG=DF,且AG⊥DF于點H,連接EG,DG,延長AB,DG相交于點P.(1)若AH=6,F(xiàn)H=2,求AE的長;(2)求證:∠P=45o;(3)若DG=2PG,求證:∠AGE=∠EDG.26.(10分)山西是我國釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長的歷史進程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價是元,經(jīng)調(diào)查發(fā)現(xiàn),當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶(售價不高于元)(1)售價為多少時可以使每天的利潤最大?最大利潤是多少?(2)要使每天的利潤不低于元,每瓶竹葉青酒的售價應該控制在什么范圍內(nèi)?

參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)點與圓的位置關系進行判斷.【詳解】∵⊙O的半徑為6cm,P到圓心O的距離為6cm,

即OP=6,

∴點P在⊙O上.

故選:B.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種,設⊙O的半徑為r,點P到圓心的距離OP=d,則有:點P在圓外?d>r;點P在圓上?d=r;點P在圓內(nèi)?d<r.2、A【解析】根據(jù)一元二次方程的定義進行解答即可.【詳解】①ax2+bx+c=0,當a=0時,該方程不是一元二次方程;②x2=0符合一元二次方程的定義;③符合一元二次方程的定義;④是分式方程.綜上所述,其中一元二次方程的是②和③.故選A.【點睛】本題考查了一元二次方程的定義,利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.3、A【分析】利用一元二次方程解得定義,將代入得到,然后解關于的方程.【詳解】解:將代入得到,解得故選A【點睛】本題考查了一元二次方程的解.4、D【分析】直接把x=1代入方程得到關于m的方程,然后解關于m的方程即可.【詳解】解:把x=1代入得m-1-1+1=0,

解得m=1.

故選:D.【點睛】本題考查一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.5、D【分析】根據(jù)二次函數(shù)的對稱性補全圖像,再根據(jù)二次函數(shù)的性質即可求解.【詳解】如圖,∵與軸的一個交點坐標為,拋物線的對稱軸是,實驗求出二次函數(shù)與x軸的另一個交點為(-2,0)故可補全圖像如下,由圖可知a<0,c>0,對稱軸x=1,故b>0,∴,①錯誤,②對稱軸x=1,故x=-,∴,正確;③如圖,作y=2圖像,與函數(shù)有兩個交點,∴方程有兩個不相等的實數(shù)根,正確;④∵x=-2時,y=0,即,正確;⑤∵拋物線的對稱軸為x=1,故點在該拋物線上,則,正確;故選D【點睛】此題主要考查二次函數(shù)的圖像,解題的關鍵是熟知二次函數(shù)的對稱性.6、D【分析】方程的解就是能使方程左右兩邊相等的未知數(shù)的值,把x=1代入方程,即可得到一個關于a的方程,即可解得實數(shù)a的值;【詳解】解:由題可知,一元二次方程x2+2x﹣a=0的一個根是1,將x=1代入方程得,,解得a=3;故選D.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的解是解題的關鍵.7、D【解析】利用配方法把二次函數(shù)解析式化為頂點式,根據(jù)二次函數(shù)的性質解答.【詳解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,則當x>﹣2時,y隨x的增大而增大,∴當x=時,y的最大值為()2+4×+3=,故選:D.【點睛】本題考查配方法把二次函數(shù)解析式化為頂點式根據(jù)二次函數(shù)性質解答的運用8、C【分析】易得AG∥BC,進而可得△AFG∽△CFB,然后根據(jù)相似三角形的性質以及BA=BC即可判斷①;根據(jù)余角的性質可得∠ABG=∠BCD,然后利用“角邊角”可證明△ABG≌△BCD,可得AG=BD,于是有AG=BC,由①根據(jù)相似三角形的性質可得,進而可得FG=FB,然后根據(jù)FE≠BE即可判斷②;根據(jù)相似三角形的性質可得,再根據(jù)等腰直角三角形的性質可得AC=AB,然后整理即可判斷③;過點F作FM⊥AB于M,如圖,根據(jù)相似三角形的性質和三角形的面積整理即可判斷④.【詳解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正確;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵點D是AB的中點,∴BD=AB,∴AG=BC,∵△AFG∽△CFB,∴,∴FG=FB,∵FE≠BE,∴點F是GE的中點不成立,故②錯誤;∵△AFG∽△CFB,∴,∴AF=AC,∵AC=AB,∴,故③正確;過點F作FM⊥AB于M,如圖,則FM∥CB,∴△AFM∽△ACB,∴,∵,∴,故④錯誤.綜上所述,正確的結論有①③共2個.故選:C.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質和等腰直角三角形的性質等知識,屬于??碱}型,熟練掌握全等三角形和相似三角形的判定和性質是解題的關鍵.9、C【分析】根據(jù)求出m的值,再把求得的m的值代回原方程,然后解一元二次方程即可求出方程的兩個根.【詳解】解:∵△=b2﹣4ac=0,∴4﹣4m=0,解得:m=1,∴原方程可化為:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.故選C.【點睛】本題考查了一元二次方程根的判別式和一元二次方程的解法,常用的方法由直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.10、A【分析】根據(jù)平行線分線段成比例定理列出比例式,代入計算得到答案.【詳解】解:∵=,∴,∵DE∥BC,∴,故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.二、填空題(每小題3分,共24分)11、3【分析】函數(shù)的圖象與軸的交點的橫坐標就是方程的根,再根據(jù)兩根之和公式與對稱軸公式即可求解.【詳解】根據(jù)兩根之和公式可得,即則拋物線的對稱軸:故填:3.【點睛】本題考查二次函數(shù)與一元二次方程的關系和兩根之和公式與對稱軸公式,熟練掌握公式是關鍵.12、【分析】△ABF和△ABE等高,先判斷出,進而算出,△ABF和△AFD等高,得,由,即可解出.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵E是?ABCD的BC邊的中點,∴,∵△ABE和△ABF同高,∴,∴S△ABE=S△ABF,設?ABCD中,BC邊上的高為h,∵S△ABE=×BE×h,S?ABCD=BC×h=2×BE×h,∴S?ABCD=4S△ABE=4×S△ABF=6S△ABF,∵△ABF與△ADF等高,∴,∴S△ADF=2S△ABF,∴S四邊形ECDF=S?ABCD﹣S△ABE﹣S△ADF=S△ABF,∴,故答案為:.【點睛】本題考查了相似三角的面積類題型,運用了線段成比例求面積之間的比值,靈活運用線段比是解決本題的關鍵.13、【分析】根據(jù)幾何概率的求解公式即可求解.【詳解】解:∵總面積為9個小正方形的面積,其中陰影部分面積為3個小正方形的面積∴飛鏢落在陰影部分的概率是,故答案為.【點睛】此題主要考查概率的求解,解題的關鍵是熟知幾何概率的公式.14、2【解析】由5x-5的值與2x-9的值互為相反數(shù)可知:5x-5+2x-9=0,解此方程即可求得答案.【詳解】由題意可得:5x-5+2x-9=0,移項,得7x=14,系數(shù)化為1,得x=2.【點睛】本題考查了相反數(shù)的性質以及一元一次方程的解法.15、1【分析】把原點坐標代入中得到關于m的一次方程,然后解一次方程即可.【詳解】∵拋物線經(jīng)過點(0,0),∴?1+m=0,∴m=1.故答案為1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.16、【分析】首先設AB=CD=AD=BC=a,再根據(jù)拋物線解析式可得E點坐標,表示出C點橫坐標和縱坐標,進而可得方程﹣5﹣a=﹣5,再解即可.【詳解】設AB=CD=AD=BC=a,∵拋物線y=(x+1)2﹣5,∴頂點E(﹣1,﹣5),對稱軸為直線x=﹣1,∴C的橫坐標為﹣1,D的橫坐標為﹣1﹣,∵點C在拋物線y=(x+1)2﹣5上,∴C點縱坐標為(﹣1+1)2﹣5=﹣5,∵E點坐標為(﹣1,﹣5),∴B點縱坐標為﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合題意,舍去),故答案為:.【點睛】此題主要考查二次函數(shù)與幾何綜合,解題的關鍵是熟知二次函數(shù)的圖像與性質、正方形的性質.17、(3,0).【解析】分析:根據(jù)(0,3)、(2,3)兩點求得對稱軸,再利用對稱性解答即可.詳解:∵拋物線y=ax2+bx+c經(jīng)過(0,3)、(2,3)兩點,∴對稱軸x==1;點(﹣1,0)關于對稱軸對稱點為(3,0),因此它的圖象與x軸的另一個交點坐標是(3,0).故答案為(3,0).點睛:本題考查了拋物線與x軸的交點,關鍵是熟練掌握二次函數(shù)的對稱性.18、(2,10)16【分析】將點P1的橫坐標2代入函數(shù)表達式即可求出點P1縱坐標,將右邊三個矩形平移,如圖所示,可得出所求陰影部分面積之和等于矩形ABCP1的面積,求出即可.【詳解】解:因為點P1的橫坐標為2,代入,得y=10,∴點P1的坐標為(2,10),將右邊三個矩形平移,如圖所示,

把x=10代入反比例函數(shù)解析式得:y=2,∴由題意得:P1C=AB=10-2=8,

則S1+S2+S3+S4=S矩形ABCP1=2×8=16,

故答案為:(2,10),16.【點睛】此題考查了反比例函數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關鍵.三、解答題(共66分)19、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由拋物線的解析式先求出點A,B的坐標,再證△AOC∽△COB,利用相似三角形的性質可求出CO的長;(2)先求出拋物線的解析式,再設出點D的坐標(m,m2﹣m﹣2),用含m的代數(shù)式表示出△BCD的面積,利用函數(shù)的性質求出其最大值;(3)分類討論,分三種情況由平移規(guī)律可輕松求出點P的三個坐標.【詳解】(1)在拋物線y=a(x+2)(x﹣4)中,當y=0時,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)將C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴拋物線解析式為:y=x2﹣x﹣2,如圖1,連接OD,設D(m,m2﹣m﹣2),則S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根據(jù)二次函數(shù)的圖象及性質可知,當m=2時,△BCD的面積有最大值2;(3)如圖2﹣1,當四邊形ACBP為平行四邊形時,由平移規(guī)律可知,點C向右平移4個單位長度,再向上平移2個單位長度得到點B,所以點A向右平移4個單位長度,再向上平移2個單位長度得到點P,因為A(﹣2,0),所以P1(2,2);同理,在圖2﹣2,圖2﹣3中,可由平移規(guī)律可得P2(6,﹣2),P3(﹣6,﹣2);綜上所述,當以點A、C、B、P為頂點的四邊形是平行四邊形時,點P的坐標為(2,2),(6,﹣2),P3(﹣6,﹣2).【點睛】本題考查了相似三角形的判定與性質,待定系數(shù)法求二次函數(shù)的解析式,三角形的面積及平移規(guī)律等,解題關鍵是熟知平行四邊形的性質及熟練運用平移規(guī)律.20、.【分析】由已知可得,從而可知,,設AB=3x,則BE=2x,再利用勾股定理和等腰三角形性質用x表示DE和BC,從而解答【詳解】解:∵∠BAE=∠DAE+∠BAD,∠ADE=∠B+∠BAD,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE,∴,∴,,過A點作AH⊥BC,垂足為H,設AB=3x,則BE=2x,∵∠B=30°,∴,,∴,在中,,又∵,∴,∴,∵AB=AC,AH⊥BC,∴,∴,故答案為:.【點睛】本題考查了相似三角形的判定和性質、等腰三角形的性質以及勾股定理,利用三角形相似得到AB與BE的關系是解題的關鍵.21、(1);(2)存在,或,理由見解析;(3)或.【分析】(1)將A、C的坐標代入求出a、c即可得到解析式;(2)先求出E點坐標,然后作AE的垂直平分線,與x軸交于Q,與y軸交于Q',根據(jù)垂直平分線的性質可知Q、與A、E,Q'與A、E組成的三角形是以AE為底邊的等腰三角形,設Q點坐標(0,x),Q'坐標(0,y),根據(jù)距離公式建立方程求解即可;(3)根據(jù)A、E坐標,求出AE長度,然后推出∠BAE=∠ABC=45°,設,由相似得到或,建立方程求解即可.【詳解】(1)將,代入得:,解得∴拋物線解析式為(2)存在,理由如下:聯(lián)立和,,解得或∴E點坐標為(4,-5),如圖,作AE的垂直平分線,與x軸交于Q,與y軸交于Q',此時Q點與Q'點的坐標即為所求,設Q點坐標(0,x),Q'坐標(0,y),由QA=QE,Q'A=Q'E得:,解得,故Q點坐標為或(3)∵,∴,當時,解得或3∴B點坐標為(3,0),∴∴,,,由直線可得AE與y軸的交點為(0,-1),而A點坐標為(-1,0)∴∠BAE=45°設則,∵和相似∴或,即或解得或,∴或.【點睛】本題考查二次函數(shù)的綜合問題,是中考常見的壓軸題型,熟練掌握待定系數(shù)法求函數(shù)解析式,等腰三角形的性質,以及相似三角形的性質是解題的關鍵.22、(1),;(2)x1=2,x2=-1.【分析】(1)方程移項后,利用完全平方公式配方,開方即可求出解;(2)提取公因式化為積的形式,然后利用兩因式相乘積為0,兩因式中至少有一個為0,轉化為兩個一元一次方程來求解.【詳解】解:(1)方程整理得:,

配方得:,即,

開方得:,

解得:,;(2)方程變形得:,即,即或,解得.【點睛】本題考查解一元二次方程.熟練掌握解一元二次方程的方法,并能結合實際情況選擇合適的方法是解決此題的關鍵.23、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根據(jù)正弦的定義即可求解;(2)作MC⊥OB,先求出直線AB解析式,根據(jù)等腰三角形的性質及三角函數(shù)的定義求出M點坐標,根據(jù)MN∥OB,求出N點坐標;(3)由于點C是定點,點P隨△ABO旋轉時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據(jù)點和圓的位置關系可知,當點P在線段OB上時,CP=BP-BC最短;當點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>BN,所以點P與M重合時,BP=BM最長,代入CP=BP+BC求CP的最大值.【詳解】(1)作AH⊥OB,∵,.∴H(3,5)∴AH=3,AH=∴==(2)由(1)得A(3,4),又求得直線AB的解析式為:y=∵旋轉,∴MB=OB=6,作MC⊥OB,∵AO=BO,∴∠AOB=∠ABO∴MC=MBsin∠ABO=6×=即M點的縱坐標為,代入直線AB得x=∴,∵∠NMB=∠AOB=∠ABO∴MN∥OB,又MN=AB=5,則+5=∴(3)連接BP∵點D為線段OA上的動點,OA的對應邊為MN∴點P為線段MN上的動點∴點P的運動軌跡是以B為圓心,BP長為半徑的圓∵C在OB上,且CB=OB=3∴當點P在線段OB上時,CP=BP?BC最短;當點P在線段OB延長線上時,CP=BP+BC最長如圖3,當BP⊥MN時,BP最短∵S△NBM=S△ABO,MN=OA=5∴MN?BP=OB?yA∴BP===∴CP最小值=?3=當點P與M重合時,BP最大,BP=BM=OB=6∴CP最大值=6+3=9∴線段CP長的取值范圍為.【點睛】此題主要考查一次函數(shù)與幾何綜合,解題的關鍵是熟知待定系數(shù)法的運用、旋轉的性質、三角函數(shù)的應用.24、(1)B;(2);;;;(3);(4);;;.【分析】(1)根據(jù)有序數(shù)組中x、y和z表示的實際意義即可得出結論;(2)根據(jù)三視圖的定義和有序數(shù)組中x、y和z表示的實際意義即可得出結論;(3)根據(jù)題意,分別從不同方向找出面積為、和的長方形,用含x、y、z的式子表示出它們的個數(shù),然后根據(jù)表面積公式計算即可;(4)由題意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分類討論,根據(jù)(3)的公式分別求出在每一種情況下的最小值,最后通過比較找出最小的即可得出結論.【詳解】解:(1)有序數(shù)組(3,2,4)表示3排2列4層,故B選項符合故選:B.(2)由左視圖和俯視圖可知:該幾何體共碼放了2排,由主視圖和俯視圖可知:該幾何體共碼放了3列,由主視圖和左視圖可知:該幾何體共碼放了2層,故這種碼放方式的有序數(shù)組為(,,);組成這個幾何體的單位長方體的個數(shù)為2×3×2=;故答案為:;;;;(3)根據(jù)題意可知:從幾何體的前面和后面看:面積為的長方形共有2yz個,從幾何體的左面和右面看:面積為的長方形共有2xz個,從幾何體的上面和下面看:面積為的長方形共有2xy個,∴幾何體表面積(4)由題意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3①當xyz=1×1×12時∵根據(jù)(3)中公式可知,此時當x=1,y=1,z=12時,幾何體表面積最小此時;②當xyz=1×2×6時∵根據(jù)(3)中公式可知,此時當x=1,y=2,z=6時,幾何體表面積最小此時;③當xyz=1×3×4時∵根據(jù)(3)中公式可知,此時當x=1,y=3,z=4時,幾何體表面積最小此時;④當xyz=2×2×3時∵根據(jù)(3)中公式可知,此時當x=2,y=2,z=3時,幾何體表面積最小此時;∵∴這個有序數(shù)組為(,,),最小面積為.故答案為:;;;1.【點睛】此題考查的是新定義類問題,讀懂材料、并歸納總結公式和掌握三視圖的概念和表面積的求法和分類討論的數(shù)學思想是解決此題的關鍵.25、(1);(2)見詳解;(3)見詳解【分析】(1)在Rt△ADH中,設AD=DF=x,則DH=x-2,由勾股定理,求出AD的長度,由等腰直角三角形的性質,即可求出AE的長度;(2)根據(jù)題意,設∠ADF=2a,則求出∠FAH=,然后∠ADG=∠AGD=,再根據(jù)三角形的外角性質,即可得到答案;(3)過點A作AM⊥DP于點M,連接EM,EF,根據(jù)等腰直角三角形的判定和性質,全等三角形的判定和性質,得到角之間的關系,從而通過等量互換,即可得到結論成立.【詳解】解:(1)∵AG⊥DF于點H,∴∠AHD=90°,∵AH=6,F(xiàn)H=2,在Rt△ADH中,設AD=DF=x,則DH=DFFH=x-2,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論