三年 (2020-2022 ) 新高考真題匯編專題03導(dǎo)數(shù)及其應(yīng)用_第1頁
三年 (2020-2022 ) 新高考真題匯編專題03導(dǎo)數(shù)及其應(yīng)用_第2頁
三年 (2020-2022 ) 新高考真題匯編專題03導(dǎo)數(shù)及其應(yīng)用_第3頁
三年 (2020-2022 ) 新高考真題匯編專題03導(dǎo)數(shù)及其應(yīng)用_第4頁
三年 (2020-2022 ) 新高考真題匯編專題03導(dǎo)數(shù)及其應(yīng)用_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新高考專題03導(dǎo)數(shù)及其應(yīng)用【2022年新高考1卷】1.設(shè),則(

)A. B. C. D.【答案】C【解析】【分析】構(gòu)造函數(shù),導(dǎo)數(shù)判斷其單調(diào)性,由此確定的大小.【詳解】方法一:構(gòu)造法設(shè),因?yàn)?,?dāng)時(shí),,當(dāng)時(shí),所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)遞增,又,所以當(dāng)時(shí),,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,即,所以故選:C.方法二:比較法解:,,,①,令則,故在上單調(diào)遞減,可得,即,所以;②,令則,令,所以,所以在上單調(diào)遞增,可得,即,所以在上單調(diào)遞增,可得,即,所以故【2021年新高考1卷】2.若過點(diǎn)可以作曲線的兩條切線,則(

)A. B.C. D.【答案】D【解析】【分析】解法一:根據(jù)導(dǎo)數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線的圖象,根據(jù)直觀即可判定點(diǎn)在曲線下方和軸上方時(shí)才可以作出兩條切線.【詳解】在曲線上任取一點(diǎn),對函數(shù)求導(dǎo)得,所以,曲線在點(diǎn)處的切線方程為,即,由題意可知,點(diǎn)在直線上,可得,令,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,所以,,由題意可知,直線與曲線的圖象有兩個(gè)交點(diǎn),則,當(dāng)時(shí),,當(dāng)時(shí),,作出函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),直線與曲線的圖象有兩個(gè)交點(diǎn).故選:D.解法二:畫出函數(shù)曲線的圖象如圖所示,根據(jù)直觀即可判定點(diǎn)在曲線下方和軸上方時(shí)才可以作出兩條切線.由此可知.故選:D.【點(diǎn)睛】解法一是嚴(yán)格的證明求解方法,其中的極限處理在中學(xué)知識(shí)范圍內(nèi)需要用到指數(shù)函數(shù)的增長特性進(jìn)行估計(jì),解法二是根據(jù)基于對指數(shù)函數(shù)的圖象的清晰的理解與認(rèn)識(shí)的基礎(chǔ)上,直觀解決問題的有效方法.【2022年新高考1卷】3.已知函數(shù),則(

)A.有兩個(gè)極值點(diǎn) B.有三個(gè)零點(diǎn)C.點(diǎn)是曲線的對稱中心 D.直線是曲線的切線【答案】AC【解析】【分析】利用極值點(diǎn)的定義可判斷A,結(jié)合的單調(diào)性、極值可判斷B,利用平移可判斷C;利用導(dǎo)數(shù)的幾何意義判斷D.【詳解】由題,,令得或,令得,所以在,上單調(diào)遞增,上單調(diào)遞減,所以是極值點(diǎn),故A正確;因,,,所以,函數(shù)在上有一個(gè)零點(diǎn),當(dāng)時(shí),,即函數(shù)在上無零點(diǎn),綜上所述,函數(shù)有一個(gè)零點(diǎn),故B錯(cuò)誤;令,該函數(shù)的定義域?yàn)?,,則是奇函數(shù),是的對稱中心,將的圖象向上移動(dòng)一個(gè)單位得到的圖象,所以點(diǎn)是曲線的對稱中心,故C正確;令,可得,又,當(dāng)切點(diǎn)為時(shí),切線方程為,當(dāng)切點(diǎn)為時(shí),切線方程為,故D錯(cuò)誤.故選:AC.【2022年新高考1卷】4.若曲線有兩條過坐標(biāo)原點(diǎn)的切線,則a的取值范圍是________________.【答案】【解析】【分析】設(shè)出切點(diǎn)橫坐標(biāo),利用導(dǎo)數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點(diǎn)得到關(guān)于的方程,根據(jù)此方程應(yīng)有兩個(gè)不同的實(shí)數(shù)根,求得的取值范圍.【詳解】∵,∴,設(shè)切點(diǎn)為,則,切線斜率,切線方程為:,∵切線過原點(diǎn),∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,故答案為:【2022年新高考2卷】5.曲線過坐標(biāo)原點(diǎn)的兩條切線的方程為____________,____________.【答案】

【解析】【分析】分和兩種情況,當(dāng)時(shí)設(shè)切點(diǎn)為,求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點(diǎn)求出,即可求出切線方程,當(dāng)時(shí)同理可得;【詳解】解法一:(化為分段函數(shù),分段求)分和兩種情況,當(dāng)時(shí)設(shè)切點(diǎn)為,求出函數(shù)導(dǎo)函數(shù),即可求出切線的斜率,從而表示出切線方程,再根據(jù)切線過坐標(biāo)原點(diǎn)求出,即可求出切線方程,當(dāng)時(shí)同理可得;解:因?yàn)?,?dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;故答案為:;解法二:(根據(jù)函數(shù)的對稱性,數(shù)形結(jié)合)當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;因?yàn)槭桥己瘮?shù),圖象為:所以當(dāng)時(shí)的切線,只需找到關(guān)于y軸的對稱直線即可.解法三:因?yàn)椋?dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;當(dāng)時(shí),設(shè)切點(diǎn)為,由,所以,所以切線方程為,又切線過坐標(biāo)原點(diǎn),所以,解得,所以切線方程為,即;故答案為:;.【2021年新高考2卷】6.已知函數(shù),函數(shù)的圖象在點(diǎn)和點(diǎn)的兩條切線互相垂直,且分別交y軸于M,N兩點(diǎn),則取值范圍是_______.【答案】【解析】【分析】結(jié)合導(dǎo)數(shù)的幾何意義可得,結(jié)合直線方程及兩點(diǎn)間距離公式可得,,化簡即可得解.【詳解】由題意,,則,所以點(diǎn)和點(diǎn),,所以,所以,所以,同理,所以.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義轉(zhuǎn)化條件,消去一個(gè)變量后,運(yùn)算即可得解.【2022年新高考1卷】7.已知函數(shù)和有相同的最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),并且從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.【答案】(1)(2)見解析【解析】【分析】(1)根據(jù)導(dǎo)數(shù)可得函數(shù)的單調(diào)性,從而可得相應(yīng)的最小值,根據(jù)最小值相等可求a.注意分類討論.(2)根據(jù)(1)可得當(dāng)時(shí),的解的個(gè)數(shù)、的解的個(gè)數(shù)均為2,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得該函數(shù)只有一個(gè)零點(diǎn)且可得的大小關(guān)系,根據(jù)存在直線與曲線、有三個(gè)不同的交點(diǎn)可得的取值,再根據(jù)兩類方程的根的關(guān)系可證明三根成等差數(shù)列.(1)的定義域?yàn)?,而,若,則,此時(shí)無最小值,故.的定義域?yàn)椋?當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.因?yàn)楹陀邢嗤淖钚≈?,故,整理得到,其中,設(shè),則,故為上的減函數(shù),而,故的唯一解為,故的解為.綜上,.(2)由(1)可得和的最小值為.當(dāng)時(shí),考慮的解的個(gè)數(shù)、的解的個(gè)數(shù).設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,設(shè),其中,則,故在上為增函數(shù),故,故,故有兩個(gè)不同的零點(diǎn),即的解的個(gè)數(shù)為2.設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,有兩個(gè)不同的零點(diǎn)即的解的個(gè)數(shù)為2.當(dāng),由(1)討論可得、僅有一個(gè)解,當(dāng)時(shí),由(1)討論可得、均無根,故若存在直線與曲線、有三個(gè)不同的交點(diǎn),則.設(shè),其中,故,設(shè),,則,故在上為增函數(shù),故即,所以,所以在上為增函數(shù),而,,故在上有且只有一個(gè)零點(diǎn),且:當(dāng)時(shí),即即,當(dāng)時(shí),即即,因此若存在直線與曲線、有三個(gè)不同的交點(diǎn),故,此時(shí)有兩個(gè)不同的根,此時(shí)有兩個(gè)不同的根,故,,,所以即即,故為方程的解,同理也為方程的解又可化為即即,故為方程的解,同理也為方程的解,所以,而,故即.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)的最值問題,往往需要利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,此時(shí)注意對參數(shù)的分類討論,而不同方程的根的性質(zhì),注意利用方程的特征找到兩類根之間的關(guān)系.【2022年新高考2卷】8.已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍;(3)設(shè),證明:.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(3)見解析【解析】【分析】(1)求出,討論其符號(hào)后可得的單調(diào)性.(2)設(shè),求出,先討論時(shí)題設(shè)中的不等式不成立,再就結(jié)合放縮法討論符號(hào),最后就結(jié)合放縮法討論的范圍后可得參數(shù)的取值范圍.(3)由(2)可得對任意的恒成立,從而可得對任意的恒成立,結(jié)合裂項(xiàng)相消法可證題設(shè)中的不等式.(1)當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,故的減區(qū)間為,增區(qū)間為.(2)設(shè),則,又,設(shè),則,若,則,因?yàn)闉檫B續(xù)不間斷函數(shù),故存在,使得,總有,故在為增函數(shù),故,故在為增函數(shù),故,與題設(shè)矛盾.若,則,下證:對任意,總有成立,證明:設(shè),故,故在上為減函數(shù),故即成立.由上述不等式有,故總成立,即在上為減函數(shù),所以.當(dāng)時(shí),有,

所以在上為減函數(shù),所以.綜上,.(3)取,則,總有成立,令,則,故即對任意的恒成立.所以對任意的,有,整理得到:,故,故不等式成立.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)參數(shù)的不等式的恒成立問題,應(yīng)該利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,注意結(jié)合端點(diǎn)處導(dǎo)數(shù)的符號(hào)合理分類討論,導(dǎo)數(shù)背景下數(shù)列不等式的證明,應(yīng)根據(jù)已有的函數(shù)不等式合理構(gòu)建數(shù)列不等式.【2021年新高考1卷】9.已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個(gè)不相等的正數(shù),且,證明:.【答案】(1)的遞增區(qū)間為,遞減區(qū)間為;(2)證明見解析.【解析】【分析】(1)首先確定函數(shù)的定義域,然后求得導(dǎo)函數(shù)的解析式,由導(dǎo)函數(shù)的符號(hào)即可確定原函數(shù)的單調(diào)性.(2)方法二:將題中的等式進(jìn)行恒等變換,令,命題轉(zhuǎn)換為證明:,然后構(gòu)造對稱差函數(shù),結(jié)合函數(shù)零點(diǎn)的特征和函數(shù)的單調(diào)性即可證得題中的結(jié)論.【詳解】(1)的定義域?yàn)椋傻?,,?dāng)時(shí),;當(dāng)時(shí);當(dāng)時(shí),.故在區(qū)間內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù),(2)[方法一]:等價(jià)轉(zhuǎn)化由得,即.由,得.由(1)不妨設(shè),則,從而,得,①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為減函數(shù),,從而,所以,由(1)得即.①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為增函數(shù),,從而,所以.又由,可得,所以.②由①②得.[方法二]【最優(yōu)解】:變形為,所以.令.則上式變?yōu)?,于是命題轉(zhuǎn)換為證明:.令,則有,不妨設(shè).由(1)知,先證.要證:.令,則,在區(qū)間內(nèi)單調(diào)遞增,所以,即.再證.因?yàn)椋孕枳C.令,所以,故在區(qū)間內(nèi)單調(diào)遞增.所以.故,即.綜合可知.[方法三]:比值代換證明同證法2.以下證明.不妨設(shè),則,由得,,要證,只需證,兩邊取對數(shù)得,即,即證.記,則.記,則,所以,在區(qū)間內(nèi)單調(diào)遞減.,則,所以在區(qū)間內(nèi)單調(diào)遞減.由得,所以,即.[方法四]:構(gòu)造函數(shù)法由已知得,令,不妨設(shè),所以.由(Ⅰ)知,,只需證.證明同證法2.再證明.令.令,則.所以,在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以,即又因?yàn)?,所以,即.因?yàn)?,所以,即.綜上,有結(jié)論得證.【整體點(diǎn)評(píng)】(2)方法一:等價(jià)轉(zhuǎn)化是處理導(dǎo)數(shù)問題的常見方法,其中利用的對稱差函數(shù),構(gòu)造函數(shù)的思想,這些都是導(dǎo)數(shù)問題必備的知識(shí)和技能.方法二:等價(jià)轉(zhuǎn)化是常見的數(shù)學(xué)思想,構(gòu)造對稱差函數(shù)是最基本的極值點(diǎn)偏移問題的處理策略.方法三:比值代換是一種將雙變量問題化為單變量問題的有效途徑,然后構(gòu)造函數(shù)利用函數(shù)的單調(diào)性證明題中的不等式即可.方法四:構(gòu)造函數(shù)之后想辦法出現(xiàn)關(guān)于的式子,這是本方法證明不等式的關(guān)鍵思想所在.【2021年新高考2卷】10.已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:只有一個(gè)零點(diǎn)①;②.【答案】(1)答案見解析;(2)證明見解析.【解析】【分析】(1)首先求得導(dǎo)函數(shù)的解析式,然后分類討論確定函數(shù)的單調(diào)性即可;(2)由題意結(jié)合(1)中函數(shù)的單調(diào)性和函數(shù)零點(diǎn)存在定理即可證得題中的結(jié)論.【詳解】(1)由函數(shù)的解析式可得:,當(dāng)時(shí),若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;(2)若選擇條件①:由于,故,則,而,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點(diǎn).綜上可得,題中的結(jié)論成立.若選擇條件②:由于,故,則,當(dāng)時(shí),,,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).當(dāng)時(shí),構(gòu)造函數(shù),則,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,注意到,故恒成立,從而有:,此時(shí):,當(dāng)時(shí),,取,則,即:,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒有零點(diǎn).綜上可得,題中的結(jié)論成立.【點(diǎn)睛】導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),所以在歷屆高考中,對導(dǎo)數(shù)的應(yīng)用的考查都非常突出,對導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.【2020年新高考1卷(山東卷)】11.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.【答案】(1)(2)【解析】【分析】(1)利用導(dǎo)數(shù)的幾何意義求出在點(diǎn)切線方程,即可得到坐標(biāo)軸交點(diǎn)坐標(biāo),最后根據(jù)三角形面積公式得結(jié)果;(2)方法一:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,當(dāng)a=1時(shí),由得,符合題意;當(dāng)a>1時(shí),可證,從而存在零點(diǎn),使得,得到,利用零點(diǎn)的條件,結(jié)合指數(shù)對數(shù)的運(yùn)算化簡后,利用基本不等式可以證得恒成立;當(dāng)時(shí),研究.即可得到不符合題意.綜合可得a的取值范圍.【詳解】(1),,.,∴切點(diǎn)坐標(biāo)為(1,1+e),∴函數(shù)在點(diǎn)(1,f(1)處的切線方程為,即,切線與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為,∴所求三角形面積為.(2)[方法一]:通性通法,,且.設(shè),則∴g(x)在上單調(diào)遞增,即在上單調(diào)遞增,當(dāng)時(shí),,∴,∴成立.當(dāng)時(shí),,,,∴存在唯一,使得,且當(dāng)時(shí),當(dāng)時(shí),,,因此>1,∴∴恒成立;當(dāng)時(shí),∴不是恒成立.綜上所述,實(shí)數(shù)a的取值范圍是[1,+∞).[方法二]【最優(yōu)解】:同構(gòu)由得,即,而,所以.令,則,所以在R上單調(diào)遞增.由,可知,所以,所以.令,則.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,則,即.所以a的取值范圍為.[方法三]:換元同構(gòu)由題意知,令,所以,所以.于是.由于,而在時(shí)為增函數(shù),故,即,分離參數(shù)后有.令,所以.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以當(dāng)時(shí),取得最大值為.所以.[方法四]:因?yàn)槎x域?yàn)椋?,所以,即.令,則,所以在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論