泉州市重點中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
泉州市重點中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
泉州市重點中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
泉州市重點中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
泉州市重點中學(xué)2022年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.用配方法解方程x2+4x+1=0時,原方程應(yīng)變形為()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=5 D.(x﹣2)2=52.13名同學(xué)參加歌詠比賽,他們的預(yù)賽成績各不相同,現(xiàn)取其中前6名參加決賽,小紅同學(xué)在知道自己成績的情況下,要判斷自己能否進入決賽,還需要知道這13名同學(xué)成績的()A.方差 B.眾數(shù) C.平均數(shù) D.中位數(shù)3.下列各點在反比例函數(shù)y=-圖象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)4.用圖中兩個可自由轉(zhuǎn)動的轉(zhuǎn)盤做“配紫色”游戲:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)出紅色,另-個轉(zhuǎn)出藍(lán)色即可配成紫色,則可配成紫色的概率是()轉(zhuǎn)盤一轉(zhuǎn)盤二A. B. C. D.5.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標(biāo)系中的圖象可以是()A. B. C. D.6.如圖,BC是的直徑,A,D是上的兩點,連接AB,AD,BD,若,則的度數(shù)是()A. B. C. D.7.方程x2+2x-5=0經(jīng)過配方后,其結(jié)果正確的是A. B.C. D.8.如圖所示幾何體的主視圖是()A. B. C. D.9.劉徽是我國古代一位偉大的數(shù)學(xué)家,他的杰作《九章算術(shù)注》和《海寶算經(jīng)》是中國寶貴的文化遺產(chǎn).他所提出的割圓術(shù)可以估算圓周率.割圓術(shù)是依次用圓內(nèi)接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內(nèi)接正十二邊形面積為()A.1 B.3 C.3.1 D.3.1410.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點D是CB延長線上的一點,且AB=BD,則tanD的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.某校開展“節(jié)約每一滴水”活動,為了了解開展活動一個月以來節(jié)約用水的情況,從八年級的400名同學(xué)中選取20名同學(xué)統(tǒng)計了各自家庭一個月節(jié)約用水情況.如表:節(jié)水量/m30.20.250.30.40.5家庭數(shù)/個24671請你估計這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是_____m3.12.比較sin30°、sin45°的大小,并用“<”連接為_____.13.已知三點A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標(biāo)為____.14.若關(guān)于x的一元二次方程x2+mx+m2﹣19=0的一個根是﹣3,則m的值是_____.15.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.16.若(m-1)+2mx-1=0是關(guān)于x的一元二次方程,則m的值是______.17.若關(guān)于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一個根為0,則m的值為_____.18.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是________.三、解答題(共66分)19.(10分)如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的鉛直高度BH與水平寬度AH的比)(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):1.414,1.732)20.(6分)今年“五?一”節(jié)期間,紅星商場舉行抽獎促銷活動,凡在本商場購物總金額在300元以上者,均可抽一次獎,獎品為精美小禮品.抽獎辦法是:在一個不透明的袋子中裝有四個標(biāo)號分別為1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.抽獎?wù)叩谝淮蚊鲆粋€小球,不放回,第二次再摸出一個小球,若兩次摸出的小球中有一個小球標(biāo)號為“1”,則獲獎.(1)請你用樹形圖或列表法表示出抽獎所有可能出現(xiàn)的結(jié)果;(2)求抽獎人員獲獎的概率.21.(6分)如圖,在ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.(1)求證:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的長.22.(8分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,(1)求點C到直線AB的距離;(2)求海警船到達事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)23.(8分)一種拉桿式旅行箱的示意圖如圖所示,箱體長,拉桿最大伸長距離,(點在同一條直線上),在箱體的底端裝有一圓形滾輪與水平地面切于點某一時刻,點距離水平面,點距離水平面.(1)求圓形滾輪的半徑的長;(2)當(dāng)人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點處且拉桿達到最大延伸距離時,點距離水平地面,求此時拉桿箱與水平面所成角的大小(精確到,參考數(shù)據(jù):).24.(8分)如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(4,0)、C(0,3)三點.(1)求該拋物線的解析式;(2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.(3)在(2)的條件下,點Q是線段OB上一動點,當(dāng)△BPQ與△BAC相似時,求點Q的坐標(biāo).25.(10分)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.(1)求證:AC是⊙O的切線:(2)若BF=8,DF=,求⊙O的半徑;(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號)26.(10分)化簡(1)(2)

參考答案一、選擇題(每小題3分,共30分)1、A【分析】先把常數(shù)項移到方程右側(cè),然后配一次項系數(shù)一半的平方即可求解.【詳解】x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故選:A.【點睛】本題考查了解一元二次方程-配方法,掌握在二次項系數(shù)為1的前提下,配一次項系數(shù)一半的平方是關(guān)鍵.2、D【解析】由于有13名同學(xué)參加歌詠比賽,要取前6名參加決賽,故應(yīng)考慮中位數(shù)的大?。驹斀狻抗灿?3名學(xué)生參加比賽,取前6名,所以小紅需要知道自己的成績是否進入前六.我們把所有同學(xué)的成績按大小順序排列,第7名學(xué)生的成績是這組數(shù)據(jù)的中位數(shù),所以小紅知道這組數(shù)據(jù)的中位數(shù),才能知道自己是否進入決賽.故選D.【點睛】本題考查了用中位數(shù)的意義解決實際問題.將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、D【分析】將各選項點的橫坐標(biāo)代入,求出函數(shù)值,判斷是否等于縱坐標(biāo)即可.【詳解】解:A.將x=3代入y=-中,解得y=-2,故(3,2)不在反比例函數(shù)y=-圖象上,故A不符合題意;B.將x=2代入y=-中,解得y=-3,故(2,3)不在反比例函數(shù)y=-圖象上,故B不符合題意;C.將x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函數(shù)y=-圖象上,故C不符合題意;D.將x=-代入y=-中,解得y=2,故(-,2)在反比例函數(shù)y=-圖象上,故D符合題意;故選:D.【點睛】此題考查的是判斷一個點是否在反比例函數(shù)圖象上,解決此題的關(guān)鍵是將點的橫坐標(biāo)代入,求出函數(shù)值,判斷是否等于縱坐標(biāo)即可.4、B【分析】將轉(zhuǎn)盤一平均分成3份,即將轉(zhuǎn)盤一標(biāo)“藍(lán)”的部分平均分成兩部分,分別記為藍(lán)、藍(lán),再利用列表法列出所有等可能事件,根據(jù)題意求概率即可.【詳解】解:將轉(zhuǎn)盤一標(biāo)“藍(lán)”的部分平均分成兩部分,分別記為藍(lán)、藍(lán),即轉(zhuǎn)盤-平均分成三等份,列表如下:紅紅藍(lán)黃紅(紅,紅)(紅,紅)(紅,藍(lán))(紅,黃)藍(lán)(藍(lán),紅)(藍(lán),紅)(藍(lán),藍(lán))(藍(lán),黃)藍(lán)(藍(lán),紅)(藍(lán),紅)(藍(lán),藍(lán))(藍(lán),黃)由表格可知,共有12種等可能的結(jié)果,其中能配成紫色的結(jié)果有5種,所以可配成紫色的概率是.故選B.【點睛】本題考查了概率,用列表法求概率時,必須是等可能事件,這是本題的易錯點,熟練掌握列表法是解題的關(guān)鍵.5、C【分析】根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負(fù)半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關(guān)鍵在于確定a、b的大小6、A【分析】連接AC,如圖,根據(jù)圓周角定理得到,,然后利用互余計算的度數(shù).【詳解】連接AC,如圖,∵BC是的直徑,∴,∵,∴.故答案為.故選A.【點睛】本題考查圓周角定理和推論,解題的關(guān)鍵是掌握圓周角定理和推論.7、C【詳解】解:根據(jù)配方法的意義,可知在方程的兩邊同時加減一次項系數(shù)的一半的平方,可知,即,配方為.故選:C.【點睛】此題主要考查了配方法,解題關(guān)鍵是明確一次項的系數(shù),然后在方程的兩邊同時加減一次項系數(shù)的一半的平方,即可求解.8、C【解析】根據(jù)主視圖的定義即可得出答案.【詳解】從正面看,共有兩列,第一列有兩個小正方形,第二列有一個小正方形,在下方,只有選項C符合故答案選擇C.【點睛】本題考查的是三視圖,比較簡單,需要熟練掌握三視圖的畫法.9、B【分析】根據(jù)直角三角形的30度角的性質(zhì)以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內(nèi)接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內(nèi)接正十二邊形的面積S=12××1×=3.故選B.【點睛】此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.10、D【分析】設(shè)AC=m,解直角三角形求出AB,BC,BD即可解決問題.【詳解】設(shè)AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故選:D.【點睛】本題考查解直角三角形,直角三角形30度角的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題(每小題3分,共24分)11、130【解析】先計算這20名同學(xué)各自家庭一個月的節(jié)水量的平均數(shù),即樣本平均數(shù),然后乘以總數(shù)400即可解答.【詳解】20名同學(xué)各自家庭一個月平均節(jié)約用水是:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),因此這400名同學(xué)的家庭一個月節(jié)約用水的總量大約是:400×0.325=130(m3),故答案為130.【點睛】本題考查的是通過樣本去估計總體,只需將樣本“成比例地放大”為總體即可,關(guān)鍵是求出樣本的平均數(shù).12、<.【解析】直接利用特殊角的三角函數(shù)值代入求出答案.【詳解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題關(guān)鍵.13、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據(jù)勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內(nèi)切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標(biāo),即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設(shè)⊙P的半徑為r,根據(jù)三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設(shè)AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標(biāo)為(6,4),故答案為:(6,4).【點睛】本題主要考查勾股定理、三角形的內(nèi)切圓半徑公式及切線長定理,根據(jù)三角形的內(nèi)切圓半徑公式及切線長定理求出點P的坐標(biāo)是解題的關(guān)鍵.14、-2或1.【解析】將x=-3代入原方程,得9-3m+m2-19=0,m2-3m-10=0,(m-1)(m+2)=0,m=-2或1.故答案為-2或1.點睛:已知方程的一個實數(shù)根,要求方程中的未知參數(shù),把根代入方程即可.15、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,16、-2【分析】根據(jù)一元二次方程的定義:未知數(shù)的最高次數(shù)是2;二次項系數(shù)不為1.由這兩個條件得到相應(yīng)的關(guān)系式,再求解即可.【詳解】解:由題意,得m(m+2)-1=2且m-1≠1,解得m=-2,故答案為-2.【點睛】本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特別要注意a≠1的條件.17、﹣1.【分析】根據(jù)一元二次方程的定義得到m-1≠0;根據(jù)方程的解的定義得到m2-1=0,由此可以求得m的值.【詳解】解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案為﹣1.【點睛】本題考查一元二次方程的解的定義和一元二次方程的定義.注意:一元二次方程的二次項系數(shù)不為零.18、【解析】試題分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等邊三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等邊三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考點:旋轉(zhuǎn)的性質(zhì).三、解答題(共66分)19、(1)點B距水平面AE的高度BH為5米.(2)宣傳牌CD高約2.7米.【分析】(1)過B作DE的垂線,設(shè)垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH.(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG,由此可求出CG的長然后根據(jù)CD=CG+GE﹣DE即可求出宣傳牌的高度.【詳解】解:(1)過B作BG⊥DE于G,在Rt△ABF中,i=tan∠BAH=,∴∠BAH=30°∴BH=AB=5(米).答:點B距水平面AE的高度BH為5米.(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15.在Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.在Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7(米).答:宣傳牌CD高約2.7米.20、(1)詳見解析(2)12【解析】試題分析:(1)根據(jù)列表法與畫樹狀圖的方法畫出即可。(2)根據(jù)概率公式列式計算即可得解。解:(1)畫樹狀圖表示如下:抽獎所有可能出現(xiàn)的結(jié)果有12種。(2)∵由(1)知,抽獎所有可能出現(xiàn)的結(jié)果共有12種,這些結(jié)果出現(xiàn)的可能性相等,其中有一個小球標(biāo)號為“1”的有6種,∴抽獎人員的獲獎概率為P=621、(1)詳見解析;(2)【分析】(1)由平行四邊形的性質(zhì)可知AB∥CD,AD∥BC.所以∠B=∠ECF,∠DAE=∠AEB,又因為又∠DAE=∠F,進而可證明:△ABE∽△ECF;(2)由(1)可知:△ABE∽△ECF,所以,由平行四邊形的性質(zhì)可知BC=AD=1,所以EC=BC?BE=1?2=2,代入計算即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC.∴∠B=∠ECF,∠DAE=∠AEB.又∵∠DAE=∠F,∴∠AEB=∠F.∴△ABE∽△ECF;(2)∵△ABE∽△ECF,∴,∵四邊形ABCD是平行四邊形,∴BC=AD=1.∴EC=BC?BE=1?2=2.∴.∴FC=.【點睛】本題考查了平行四邊形的性質(zhì)、相似三角形的判定和性質(zhì),關(guān)鍵是由平行四邊形的性質(zhì)得出AB∥CD,AD∥BC.22、(1)40海里;(2)小時.【分析】(1)作CD⊥AB,在Rt△ACD中,由∠CAD=30°知CD=AC,據(jù)此可得答案;(2)根據(jù)BC=求得BC的長,繼而可得答案.【詳解】解:(1)如圖,過點C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴點C到直線AB距離CD=AC=40(海里).(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到達事故船C處所需的時間大約為:50÷40=(小時).【點睛】此題主要考查解直角三角形的應(yīng)用,解題的關(guān)鍵是熟知三角函數(shù)的定義.23、(1);(2)【分析】(1)過點作于點,交于點,由平行得到,再根據(jù)相似三角形的性質(zhì)得到,列出關(guān)于半徑的方程,解方程即可得解;(2)在(1)結(jié)論的基礎(chǔ)上結(jié)合已知條件,利用銳角三角函數(shù)解即可得解.【詳解】解:(1)過點作于點,交于點,如圖:∴∴∴設(shè)圓形滾輪的半徑的長是∴,即∴∴圓形滾輪的半徑的長是;(2)∵∴在中,∴.故答案是:(1);(2)【點睛】本題考查了解直角三角形以及相似三角形的判定和性質(zhì),在求線段長度時,可以通過建立方程模型來解決問題.24、(1);(2)存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9;(3)Q的坐標(biāo)或.【解析】(1)將A(1,0)、B(4,0)、C(0,3)代入y=ax2+bx+c,求出a、b、c即可;(2)四邊形PAOC的周長最小值為:OC+OA+BC=1+3+5=9;(3)分兩種情況討論:①當(dāng)△BPQ∽△BCA,②當(dāng)△BQP∽△BCA.【詳解】解:(1)由已知得,解得所以,拋物線的解析式為;(2)∵A、B關(guān)于對稱軸對稱,如下圖,連接BC,與對稱軸的交點即為所求的點P,此時PA+PC=BC,∴四邊形PAOC的周長最小值為:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC=5,∴OC+OA+BC=1+3+5=9;∴在拋物線的對稱軸上存在點P,使得四邊形PAOC的周長最小,四邊形PAOC周長的最小值為9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論