2023屆吉林省長春市第72中學(xué)九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2023屆吉林省長春市第72中學(xué)九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2023屆吉林省長春市第72中學(xué)九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2023屆吉林省長春市第72中學(xué)九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2023屆吉林省長春市第72中學(xué)九年級數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,線段AB兩個端點的坐標(biāo)分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則線段CD的長為()A.2 B. C.3 D.2.下列事件中,是隨機事件的是()A.三角形任意兩邊之和大于第三邊B.任意選擇某一電視頻道,它正在播放新聞聯(lián)播C.a(chǎn)是實數(shù),|a|≥0D.在一個裝著白球和黑球的袋中摸球,摸出紅球3.如圖,在△ABC中,點D,E,F(xiàn)分別是邊AB,AC,BC上的點,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶54.下列有關(guān)圓的一些結(jié)論①任意三點可以確定一個圓;②相等的圓心角所對的弧相等;③平分弦的直徑垂直于弦,并且平分弦所對的??;④圓內(nèi)接四邊形對角互補.其中正確的結(jié)論是()A.① B.② C.③ D.④5.如圖,已知.按照以下步驟作圖:①以點為圓心,以適當(dāng)?shù)拈L為半徑作弧,分別交的兩邊于,兩點,連接.②分別以點,為圓心,以大于線段的長為半徑作弧,兩弧在內(nèi)交于點,連接,.③連接交于點.下列結(jié)論中錯誤的是()A. B.C. D.6.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當(dāng)時,函數(shù)值隨著的增大而增大; D.當(dāng)時,.7.圓錐的底面半徑為2,母線長為6,它的側(cè)面積為()A. B. C. D.8.在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<19.中,,,,則的值是()A. B. C. D.10.小明隨機地在如圖正方形及其內(nèi)部區(qū)域投針,則針扎到陰影區(qū)域的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.在中,,則的面積為_________12.如圖,已知正方形OABC的三個頂點坐標(biāo)分別為A(2,0),B(2,2),C(0,2),若反比例函數(shù)的圖象與正方形OABC的邊有交點,請寫出一個符合條件的k值__________.13.已知點是正方形外的一點,連接,,.請從下面A,B兩題中任選一題作答.我選擇_______題:A.如圖1,若,,則的長為_________.B.如圖2,若,,則的長為_________.14.如圖,位似圖形由三角尺與其燈光下的中心投影組成,相似比為2:5,且三角尺的一邊長為8cm,則投影三角形的對應(yīng)邊長為_______㎝.15.在一個不透明的盒子中裝有6個白球,x個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,摸到白球的概率為,則x=_______.16.某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的試驗,結(jié)果如下表所示:種子個數(shù)1002003004005006007008009001000發(fā)芽種子個數(shù)94187282338435530621781814901發(fā)芽種子頻率0.9400.9350.9400.8450.8700.8830.8910.8980.9040.901根據(jù)頻率的穩(wěn)定性,估計該作物種子發(fā)芽的概率為__________(結(jié)果保留小數(shù)點后一位).17.關(guān)于x的方程的根為______.18.在△ABC中,∠C=90°,若tanA=,則sinB=______.三、解答題(共66分)19.(10分)如圖,取△ABC的邊AB的中點O,以O(shè)為圓心AB為半徑作⊙O交BC于點D,過點D作⊙O的切線DE,若DE⊥AC,垂足為點E.(1)求證:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,則的長為.20.(6分)已知為實數(shù),關(guān)于的方程有兩個實數(shù)根.(1)求實數(shù)的取值范圍.(2)若,試求的值.21.(6分)已知:如圖,AE∥CF,AB=CD,點B、E、F、D在同一直線上,∠A=∠C.求證:(1)AB∥CD;(2)BF=DE.22.(8分)如圖,在中,過半徑OD中點C作AB⊥OD交O于A,B兩點,且.(1)求OD的長;(2)計算陰影部分的面積.23.(8分)在平面直角坐標(biāo)系中,點到直線的距離即為點到直線的垂線段的長.(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?(2)如圖2,點P是反比例函數(shù)y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=?若存在,求出點P的坐標(biāo),若不存在,請說明理由.(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.24.(8分)如圖,是的直徑,點,是上兩點,且,連接,,過點作交延長線于點,垂足為.(1)求證:是的切線;(2)若,求的半徑.25.(10分)如圖1,在和中,頂點是它們的公共頂點,,.(特例感悟)(1)當(dāng)頂點與頂點重合時(如圖1),與相交于點,與相交于點,求證:四邊形是菱形;(探索論證)(2)如圖2,當(dāng)時,四邊形是什么特殊四邊形?試證明你的結(jié)論;(拓展應(yīng)用)(3)試探究:當(dāng)?shù)扔诙嗌俣葧r,以點為頂點的四邊形是矩形?請給予證明.26.(10分)如圖,AB是⊙O的直徑,半徑OD與弦AC垂直,若∠A=∠D,求∠1的度數(shù).

參考答案一、選擇題(每小題3分,共30分)1、D【分析】直接利用A,B點坐標(biāo)得出AB的長,再利用位似圖形的性質(zhì)得出CD的長.【詳解】解:∵A(6,6),B(8,2),∴AB==2,∵以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴線段CD的長為:×2=.故選:D.【點睛】本題考查了位似圖形,解題的關(guān)鍵是熟悉位似圖形的性質(zhì).2、B【分析】隨機事件就是可能發(fā)生也可能不發(fā)生的事件,根據(jù)定義即可判斷.【詳解】A、三角形任意兩邊之和大于第三邊是必然事件,故選項不合題意;B、任意選擇某一電視頻道,它正在播放新聞聯(lián)播,是隨機事件,故選項符合題意;C、a是實數(shù),|a|≥0,是必然事件,故選項不合題意;D、在一個裝著白球和黑球的袋中摸球,摸出紅球,是不可能事件,故選項不合題意.故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故選A.點睛:若,則,.4、D【分析】根據(jù)確定圓的條件、圓心角、弧、弦的關(guān)系定理、垂徑定理、圓內(nèi)接四邊形的性質(zhì)進行判斷即可得到正確結(jié)論.【詳解】解:①不共線的三點確定一個圓,故①表述不正確;②在同圓或等圓中,相等的圓心角所對的弧相等,故②表述不正確;③平分弦(不是直徑)的直徑垂直于弦,故③表述不正確;④圓內(nèi)接四邊形對角互補,故④表述正確.故選D.【點睛】本題考查了圓心角、弧、弦的關(guān)系定理,垂徑定理的推論,半圓與弧的定義,圓內(nèi)接四邊形的性質(zhì),熟練掌握定義與性質(zhì)是解題的關(guān)鍵.5、C【分析】利用基本作圖得出是角平分線的作圖,進而解答即可.【詳解】由作圖步驟可得:是的角平分線,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四邊形OCED=S△COE+S△DOE=,但不能得出,∴A、B、D選項正確,不符合題意,C選項錯誤,符合題意,故選C.【點睛】本題考查了作圖﹣基本作圖,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),三角形的面積等,熟練掌握5種基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)是解題的關(guān)鍵.6、C【解析】直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當(dāng)x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當(dāng)x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.7、B【分析】根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.【詳解】根據(jù)圓錐的側(cè)面積公式:rl=×2×6=12,故選:B.【點睛】本題主要考查了圓錐側(cè)面積公式.熟練地應(yīng)用圓錐側(cè)面積公式求出是解決問題的關(guān)鍵.8、A【分析】根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時,圖象分別位于第一、三象限;當(dāng)k<0時,圖象分別位于第二、四象限.②當(dāng)k>0時,在同一個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時,在同一個象限,y隨x的增大而增大.9、D【分析】根據(jù)勾股定理求出BC的長度,再根據(jù)cos函數(shù)的定義求解,即可得出答案.【詳解】∵AC=,AB=4,∠C=90°∴∴故答案選擇D.【點睛】本題考查的是勾股定理和三角函數(shù),比較簡單,需要熟練掌握sin函數(shù)、cos函數(shù)和tan函數(shù)分別代表的意思.10、D【分析】根據(jù)幾何概型的意義,求出圓的面積,再求出正方形的面積,算出其比值即可.【詳解】解:設(shè)正方形的邊長為2a,則圓的半徑為a,則圓的面積為:,正方形的面積為:,∴針扎到陰影區(qū)域的概率是,故選:D.【點睛】本題考查幾何概型的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積和總面積的比,這個比即事件(A)發(fā)生的概率.二、填空題(每小題3分,共24分)11、【分析】過點點B作BD⊥AC于D,根據(jù)鄰補角的定義求出∠BAD=60°,再根據(jù)∠BAD的正弦求出AD,然后根據(jù)三角形的面積公式列式計算即可得解.【詳解】如圖,過點B作BD⊥AC交AC延長線于點D,

∵∠BAC=120°,

∴∠BAD=180°-120°=60°,∵,∴,∴△ABC的面積.

故答案為:.【點睛】本題主要考查了運用勾股定理和銳角三角函數(shù)的概念解直角三角形問題,作出圖形更形象直觀.12、1(滿足條件的k值的范圍是0<k≤4)【分析】反比例函數(shù)上一點向x、y軸分別作垂線,分別交于y軸和x軸,則圍成的矩形的面積為|k|,據(jù)此進一步求解即可.【詳解】∵反比例函數(shù)圖像與正方形有交點,∴當(dāng)交于B點時,此時圍成的矩形面積最大且為4,∴|k|最大為4,∵在第一象限,∴k為正數(shù),即0<k≤4,∴k的取值可以為:1.故答案為:1(滿足條件的k值的范圍是0<k≤4).【點睛】本題主要考查了反比例函數(shù)中比例系數(shù)的相關(guān)運用,熟練掌握相關(guān)概念是解題關(guān)鍵.13、A或B【分析】A.連接,證得,然后用勾股定理即可求得答案;B.將繞點逆時針旋轉(zhuǎn),點與點重合,點旋轉(zhuǎn)至點,根據(jù)旋轉(zhuǎn)的性質(zhì)可求得,證得,最后用勾股定理即可求得答案.【詳解】A.如圖,連接,四邊形是正方形,,,,,∴,在中,;B.如圖,將繞點逆時針旋轉(zhuǎn),點與點重合,點旋轉(zhuǎn)至點,連接、、,,,,由旋轉(zhuǎn)的性質(zhì)得:,∴,,,在中,∴,,.故答案為:A或BA.B.【點睛】本題主要考查了正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、勾股定理,解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)變換的性質(zhì)和直角三角形的判定與性質(zhì),根據(jù)已知的角構(gòu)造直角三角形是正確解答本題的關(guān)鍵.14、20cm【詳解】解:∵位似圖形由三角尺與其燈光照射下的中心投影組成,相似比為2:5,三角尺的一邊長為8cm,∴投影三角形的對應(yīng)邊長為:8÷=20cm.故選B.【點睛】本題主要考查了位似圖形的性質(zhì)以及中心投影的應(yīng)用,根據(jù)對應(yīng)邊的比為2:5,再得出投影三角形的對應(yīng)邊長是解決問題的關(guān)鍵.15、1【分析】直接以概率求法得出關(guān)于x的等式進而得出答案.【詳解】解:由題意得:,解得,故答案為:1.【點睛】本題考查了概率的意義,正確把握概率的求解公式是解題的關(guān)鍵.16、0.9【分析】選一個表格中發(fā)芽種子頻率比較按近的數(shù),如0.904、0.901等都可以.【詳解】解:根據(jù)題意,由頻率估計概率,則估計該作物種子發(fā)芽的概率為:0.9;故答案為:0.9;【點睛】本題考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.17、x1=0,x2=【分析】直接由因式分解法方程,即可得到答案.【詳解】解:∵,∴或,∴,;故答案為:,.【點睛】本題考查了解一元二次方程,解題的關(guān)鍵是熟練掌握因式分解法解方程.18、【解析】分析:直接根據(jù)題意表示出三角形的各邊,進而利用銳角三角函數(shù)關(guān)系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設(shè)BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數(shù)關(guān)系,正確表示各邊長是解題關(guān)鍵.三、解答題(共66分)19、(1)證明見解析;(2)【分析】(1)連接OD,利用等邊對等角證得∠1=∠B,利用切線的性質(zhì)證得OD∥AC,推出∠B=∠C,從而證明△ABC是等腰三角形;(2)連接AD,利用等腰三角形的性質(zhì)證得∠B=∠C=30,BD=CD=2,求得直徑AB=,利用弧長公式即可求解.【詳解】(1)證明:連結(jié)OD.∵OB=OD,∴∠1=∠B,∵DE為⊙O的切線,∴∠ODE=90°,∵DE⊥AC,∴∠ODE=∠DEC=90°,∴OD∥AC,∴∠1=∠C.∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形;(2)連接AD,∵AB是⊙O的直徑,∴∠BDA=90,即AD⊥BC,又∵△ABC是等腰三角形,∠BAC=120,∴∠BAD=∠BAC=60,BD=CD,∴∠B=∠C=30,在Rt△CDE中,∠CED=90,DE=1,∠C=30,∴CD=2DE=2,∴BD=CD=2,在Rt△ABD中,,即,∴AB=,∴OA=OD=AB=,∠AOD=2∠B=60,∴的長為.故答案為:.【點睛】本題考查了切線的性質(zhì),等腰三角形的判定和性質(zhì),銳角三角函數(shù),弧長公式等知識點的綜合運用.作出常用輔助線是解題的關(guān)鍵.20、(1).(2)-3.【分析】(1)把方程化為一般式,根據(jù)方程有兩個實數(shù)根,可得,列出關(guān)于的不等式,解出的范圍即可;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,可得,,再將原等式變形為

,然后整體代入建立關(guān)于的方程,解出值并檢驗即可.【詳解】(1)解:原方程即為.,∴.∴.∴;(2)解:由根系關(guān)系,得,∵,∴∴.即.解得,或∵∴.故答案為(1).(2)-3.【點睛】本題考查一元二次方程根的判別式及應(yīng)用,一元二次方程的根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=,x1x2=.21、(1)見解析;(2)見解析.【解析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要證BF=DE,只需證到△ABE≌△CDF即可.【詳解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE=DF.∴BE+EF=DF+EF,∴BF=DE.【點睛】此題考查全等三角形的判定與性質(zhì),解題關(guān)鍵在于掌握判定定理.22、(1);(2)【分析】(1)根據(jù)垂徑定理求出BC=,在Rt△OCB中,由勾股定理列方程求解;(2)根據(jù)扇形面積公式和三角形面積公式即可求得陰影部分的面積.【詳解】解:如圖,連接OB,∵AB⊥OD,∴AC=BC=,∵C為OD中點,∴OC=,設(shè)OD=x,在Rt△OCB中,由勾股定理得,OC2+BC2=OB2,∴()2+()2=x2,解得x=2∴OD=2.(2)S△OCB=∵OC=1,OB=2,∴∠BOC=60°,∴S扇BOD=,∴陰影部分的面積為:【點睛】本題考查利用垂徑定理求半徑長及扇形面積公式,垂徑定理是解決圓中線段長的常用重要定理.23、(1);(2)點P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,先求出點A,點B坐標(biāo),可得OA=2,OB=1,AM=1,由勾股定理可求AB長,由銳角三角函數(shù)可求解;(2)設(shè)點P(a,),用參數(shù)a表示MN的長,由面積關(guān)系可求a的值,即可求點P坐標(biāo);(3)如圖3,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,設(shè)點A(a,a2﹣4a),點B(b,b2﹣4b),通過證明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根與系數(shù)關(guān)系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直線y=k(x﹣4)+1過定點N(4,1),則當(dāng)PN⊥直線y=kx+m時,點P到直線y=kx+m的距離最大,由待定系數(shù)法可求直線PN的解析式,可求k,m的值,即可求解.【詳解】解:(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,∵直線l:y=x﹣1與x軸,y軸的交點為點A,點B,∴點A(2,0),點B(0,﹣1),且點M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴點M到直線l:y=x﹣1的距離為;(2)設(shè)點P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM⊥x軸,PN⊥y軸,∠MON=10°,∴四邊形PMON是矩形,∴S△PMN=S矩形PMON=2,∴×MN×d0=2,∴×=4,∴a4﹣10a2+16=0,∴a1=2,a2=﹣2(舍去),a3=2,a4=﹣2(舍去),∴點P(,2)或(2,),(3)如圖3,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,設(shè)點A(a,a2﹣4a),點B(b,b2﹣4b),∵∠AOB=10°,∴∠AOC+∠BOD=10°,且∠AOC+∠CAO=10°,∴∠BOD=∠CAO,且∠ACO=∠BDO,∴△AOC∽△BOD,∴,∴∴ab﹣4(a+b)+17=0,∵直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B,∴a,b是方程kx+m=x2﹣4x的兩根,∴a+b=k+4,ab=﹣m,∴﹣m﹣4(k+4)+17=0,∴m=1﹣4k,∴y=kx+1﹣4k=k(x﹣4)+1,∴直線y=k(x﹣4)+1過定點N(4,1),∴當(dāng)PN⊥直線y=kx+m時,點P到直線y=kx+m的距離最大,設(shè)直線PN的解析式為y=cx+d,∴解得∴直線PN的解析式為y=x﹣1,∴k=﹣2,∴m=1﹣4×(﹣2)=1,∴直線y=kx+m的解析式為y=﹣2x+1.【點睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)的性質(zhì),待定系數(shù)法求解析式,根與系數(shù)關(guān)系,相似三角形的判定和性質(zhì),銳角三角函數(shù)等知識,利用參數(shù)列出方程是本題的關(guān)鍵.24、(1)見解析;(2)圓O的半徑為1【分析】(1)連結(jié)OC,由根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關(guān)系得,在Rt△ACB中,利用含30度的直角三角形三邊的關(guān)系得AB=2BC=1,從而求出⊙O的半徑.【詳解】解:(1)證明:連結(jié)OC,如圖∵弧FC=弧BC∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴0C//AF,∵CD⊥AF,∴0C⊥CD,∴CD是圓O的切線;(2)連結(jié)BC,如圖,∵AB為直徑,∴∠ACB=90°,∵,∴∠BOC=×110°=60°,∴∠BAC=30?,∴∠DAC=30?,在RtΔADC中,CD=,∴AC=2CD=,在RtΔACB中,BC=AC==1,∴AB=2BC=16,∴圓O的半徑為1.【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了圓周角定理和含30度的直角三角形三邊的關(guān)系.25、(1)見解析;(2)

當(dāng)∠GBC=30°時,四邊形GCFD是正方形.證明見解析;(3)當(dāng)∠G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論