數(shù)字時(shí)鐘設(shè)計(jì)_第1頁(yè)
數(shù)字時(shí)鐘設(shè)計(jì)_第2頁(yè)
數(shù)字時(shí)鐘設(shè)計(jì)_第3頁(yè)
數(shù)字時(shí)鐘設(shè)計(jì)_第4頁(yè)
數(shù)字時(shí)鐘設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩60頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

參考文獻(xiàn)參考文獻(xiàn)[1]何一鳴.電子技術(shù)基礎(chǔ)教程[M].北京:電子工業(yè)出版社,2006,6.138-227.[2]張金.電子設(shè)計(jì)工程師之路[M].北京:電子工業(yè)出版社,2014.[3]王傘.常用電路模塊分析與設(shè)計(jì)指導(dǎo)第2版[M].北京:清華大學(xué)出版社,2007.[4]黃繼昌.數(shù)字集成電路應(yīng)用300例[M].北京:人民郵電出版社,2004.[5]康華光.電子技術(shù)基礎(chǔ)(數(shù)字部分)[M].北京:高等教育出版社,1999.[6]臧春華.電子線(xiàn)路設(shè)計(jì)及應(yīng)用[M].北京:高等教育出版社,2004.[7]王永華.數(shù)字邏輯與數(shù)字系統(tǒng)[M].北京:電子工業(yè)出版社,2006,7.[8]胡翔駿.電路基礎(chǔ)簡(jiǎn)明教程[M].北京:高等教育出版社,2004.[9]胡宴如.模擬電子技術(shù)[第二版M].北京:高等教育出版社,2004.[10]陳曉文.電子線(xiàn)路課程設(shè)計(jì)[M].北京:電子工業(yè)出版社,2004.

[11]楊志忠.數(shù)字電子技術(shù)第二版[M].北京:高等教育出版社,2003.[12]廖先蕓.電子技術(shù)實(shí)踐與訓(xùn)練[M].北京:高等教育出版社,2004.

[13]閻有運(yùn).電子技術(shù)實(shí)踐教程[M].北京:中國(guó)礦大出版社,2007.[14]Harris,D.M.DigitalDesignandComputerArchitecture[M].2009,5.[15]Scherz,P.PracticalElectronicsforInventors[M].2014,4

附錄1電氣原理圖附錄2附錄2PCB版圖外文翻譯外文翻譯原文:MeasurementofTransmissionLineParametersfromSCADADataG.L.KusicandD.L.GarrisonAbstract--Transmissionlineequivalentcircuitparametersareoften25%to30%inerrorcomparedtovaluesmeasuredbytheSCADAsystem.Theseerrorscausetheeconomicdispatchtobewrong,andleadtoincreasedcostsorincorrectbilling.Theparametererrorsalsoaffectcontingencyanalysis,shortcircuitanalysis,distancerelaying,machinestabilitycalculations,transmissionplanning,andStateEstimatorAnalysis.Aneconomicexampleisusedtodemonstratetheaffectoftransmissionlineerrors.SCADAmeasurementsfromseveralutilitiesareusedtocomputethe‘realworld’valueofthetransmissionlineparameters.StateEstimationwiththeestimatedparametersiscomparedtothecomputationsusingthetheoreticalvalues.IndexTerms—SCADAMeasurements,StateEstimation,TransmissionLineParameterEstimationI.INTRODUCTIONUtilitiesinmostinstancesusetheoreticalvaluesforlineparameterscalculatedfromideallinegeometrysuchasheightofconductoraboveflat,constantresistanceearth.Earthresistivityisvariablewithterrain.Conductorsageffectsareimpossibletoestimateoverhillyterrain.Usuallyshieldwiresaregroundedateachtowerinsteadoffloatingovertheentirelinelength.Lineresistancevarieswithcurrent,theambienttemperatureandwindeffects.Anoutageisrequiredtomeasurethelinechargingequivalentcapacitance,onlyifone-sidedexcitationdoesnotcausetoomuchvoltageriseontheopen-circuitend.Constructionofnewparallellineswithmutualcoupling,affectsolddatabasevalues.Theseriesreactanceofatransmissionlineisrarelymeasured,sothevalueusedisforanideallytransposedline.Linesarenottransposedbecauseoftheaddedconstructioncosttomechanicallyalterpositionsoftheconductorswithrespecttothesupportpolesevery1/3thedistance.Withallofthesevariationsfromidealconditions,andfewrealmeasurements,utilitiesoftenhaveasmuchas25%to30%errorintheirdatabaseparameterscomparedtothe'realworld'values.UtilitiesuseMWandMVARmeteringforrevenue.Transmissionlinelossesareusuallylessthan3%ofthetotalgeneration.However,lineparametersfromatheoreticaldatabaseareusedtocalculatelosscoefficients,ordeterminetheincrementallossfactors,inordertosetthedispatchpointforgenerators(outputpower).Ifaccuratevaluesoflineparametersre-allocatethegeneratorpowers,andreducetransmissionlossesby0.1%,thistranslatesintoimmenseenergysavingsoveryearsofoperatingthepowersystem.Forexample,at0.1%savings,alargeutilitytransmitting10000GWhannually,0.6LoadFactor,fuelat$20/MBTUand10.5Milrate,maysave$11MillionperyearforbulkpowerintheeasternU.S.Monitoringthestateofthepowersystemisamajorsecurityfunctionofthecomputersystemusedatthecentralcontrolcenter(dispatchcenter)ofutilities.Voltagesandpowerflowonlinesandbusesinthecontrolareaofthepowersystemaremonitoredontheorderofevery2seconds.Ifthemeasureddataarebeyondsafeoperatingtolerancelimits,thealarmsgeneratedmustbe'cleared'bythedispatcherthroughswitchinglinecompensatorssuchascapacitorbanksandshuntreactors,adjustingvariabletaptransformers,ortransferringgeneratoroutput,etc.Sothatdispatcheractioncanbebasedonreliableandcompleteinformation,measurementsofvoltagesandpowerflowareprocessedbyaStateEstimatorwhichdetectsfaultymeasurementtransducers(baddata)and'fillsin'lostmeasurementswhenRemoteTerminalUnits(RTU's)haveinterruptedsignals.StateEstimatorcalculationsarebasedupontheoreticalvaluesfortransmissionlineparameters.ErrorsintheanalyticalvaluesfortransmissionlineparameterslimittheStateEstimator’scapabilitytodetect'baddata',andmakeitineffectiveasamonitoringtool.Withtransmissionlineerrors,thenormalizedresidualsarelargerthantheyshouldbe.Atleastoneutilityadjustsitslineparameterdatabasetomatchtherealworldtransmissionlinesinordertoimprovethestatecalculated.II.ANECONOMICEXAMPLEConsiderthe5bustransmissionnetworkshowninfigure1,wherethecostofgenerationisbidasshownfor4busses.Thetotalloadis669MWandlocatedatbussesB,C,andD.Thetransmissionlineflowsascalculatedforloss-lesslines[1]isshowninfigure1.TheflowontransmissionlineXED=.0297islimitedto240MW.TheothertransmissionlinereactancesareXAB=.0281,XBC=.0108,XCD=.0297XAD=.0303,XAE=.0064andareloss-less.Theopenarrowsinfigure1indicateinjectedpower,andtheblackfillarrowsindicateloadatthebusInfigure1,ofalltheLocationalMarginalPrice(LMP)bidsforgeneration,the600MW@$10/MWhatbusEiscompletelyutilizedbeforethe69MWatbusAisemployed.Thetransmissionlineflowsthatresultfromthisdispatchareshownonthefigure.Thetotaloperatingcostis$6966/h.Fig.1EconomicDispatchfor669MWLoadtoUtilizetheLowestCostofAvailableGenerationAstheloadonthesystemuniformlyincreasesto300MWatbussesB,C,andD,theLMPdispatchwouldattempttouseallthe210MWofinexpensivepower(110MW@$14/MWhand100MW@$15/MWh)atbusAbefore90MWofthe$30/MWhpoweratbusDisused.Thetotalcostwouldbe$11,740/h.However,when210MWisdispatchedatbusA,thisresultsin243MWofflowonlineE-Dtoviolatetheconstraint.Asaresult,only166MWoftheinexpensivepoweratbusAisutilizedand124MWatbusDisrequired.Totaloperationcostincreasesto$12,100/hbecauseoftheconstraint.Thedispatchisshowninfigure1a.IfthetransmissionlineE-Dhasa‘realworld’reactanceofXED=1.25*.0297,orinotherwordshasameasured25%morereactancethanthedatabase,thedispatchfor900MWloadutilizesallthelowcostpowerbecausethepowerflowdoesnotviolatetheE-Dlineconstraint.Thetransmissionlinepowerflowsforthiscaseareshownonfigure2.Thetotalcostofthedispatchis$11,740/h.Theexampleshowninfigure1wasemployedbyanEasternUSApowerpooltodemonstrateconstraintsinlineflow.Figure2showsthatpowerflowscomputedwithcorrectlineparametersaresignificantlydifferent,tothepointwherelargeeconomicdifferencesarepresent.Correctionsarerarelymadetotransmissionlineparametersinordertomatchmeasuredlineflowsbecausesourcesofmeasurementerrorareunknown.Inautilityitalsodifficulttochangeparametersinthedatabasebecausesomanydifferentgroupswithintheutility,e.g.,planning,relaying,security,etc.,mustchangetheirvaluesorsettingsoffieldequipment.III.ESTIMATIONOFTRANSMISSIONLINEPARAMETERSForshorttomediumlength,comparedtoa60Hzwavelength,3-phasetransmissionlinesaremodeledbypi-equivalentscalculatedfromidealgeometryandoperatedunderbalancedphaseconditions.Thevoltagemagnitudesatthelineterminationsareanaverageofthephasemeasurements,usuallyobtainedwith1%to2%accuracystep-downtransformermeasurements.Fig.1AEconomicDispatchfor900MWLoadLimitedbyConstraintonLineE-DTherealandreactivepowerflowforthepi-equivalentisasumofflowsonthe3phasesandobtainedasaninstantaneousproductof1%to2%accuratecurrentmeasurementswiththevoltagemeasurements.NeglectingthesmallcontributionsofA/Dconvertersatthetransducersandcomputernumericalwordlength,theoverallaccuracyofpowerflowmeasurementsalsoisontheorderof1%to2%.Figure2EconomicDispatchfor900MWLoadwithXED=1.25*.0297TransmissionLineReactance(Nolineconstraintsviolated)TheEasternpowerpoolusedforfigure1and1aprovidedaSCADA‘snapshot’ofpowerflowandvoltagemeasurementsforthe3-busnetworkshowninfigure3.Dataofthe‘snapshot’ispresentedinfigure4.NoticemorerealpowercomesoutoflineL1thangoesintoit(S1andS2),butthisanomalyisduetomeasurementtoleranceastherealpowerdifferenceis~2%oftheabsolutevalue.‘Snapshot’isStateEstimatorterminologyforanalmostsynchronizedsetofmeasurementsbecauseashorttimeinterval(milliseconds)existsfromtheinitialmeasurementtothefinalmeasurementforaslowlychangingload/generation.Fig.3SCADAMeasurementPointsona3BusNetworkFig.4SCADAMeasurementsforFigure3AStateEstimationcomputation‘smoothes’thedata,detectsbadtransducers,andcalculatesthebestestimateofthevoltageandphaseangleatbussesofthenetwork,i.e.,the‘state’ofthenetwork.Thecalculatedstateisaweightedleastsquaresestimate‘bestfit’tothemeasurementsusingdatabasevaluesforthepi-equivalenttransmissionlineparameters,R+jXfortheseriesp.u.impedanceelements–jY/2fortheshuntp.u.susceptanceatbothendsoftheline.Analyticalmethodsexisttoestimatetransmissionlineparametersfrom‘snapshots’inconjunctionwiththeStateEstimator.ThefirstsuchmethodappearedsoonafterthestartofStateEstimation[2].Manycontributionsweremadearound1990ofwhich[3,4]aretypical,newtechniquescontinuetoevolve[5].Arecentsummaryisreference[6].Thedata‘snapshot’offigure4wasusedtoestimatethetransmissionlineparametersoffigure3byamethodofpropagatingresidualerrorsofStateEstimationrelatedto[5]andfindingtheworst‘fit’line.Theresultsoftheparameterestimationwiththismethodarepresentedinfigure5.Only2transmissionlinesoftheFigure3networkcouldbeestimatedbeforeresidualerrors‘swampedout’furtherdetection.LinesBCandABshow25%errorsinlinechargingsusceptancecomparedtothedatabase.Thereisa50%errorintheestimatedlineresistanceoflineBCcomparedtothedatabasevalue,whichmaybeduetoanoperatingtemperaturedifference.Fig.5ResultsofTransmissionLineParameterEstimationforNetworkofFigure3withSCADADataofFigure4TheestimatedvaluesforlinechargingsusceptanceoftransmissionlinesBCandABaffectreactivecompensationintheirvicinity.The50%differenceinresistanceoflineBCmayaffectthetransmissionlosscoefficientsinthevicinity.PowerflowcalculationswithS1toS6dataoffigure4showthatpowerflowonthenetworklinesismuchclosertomeasuredvaluesusingtheestimatedparametersthanwiththedatabasevalues.IV.VERIFICATIONOFTHEPARAMETERESTIMATIONMETHODItisdifficulttoprovethatestimatedtransmissionlineparametersaretruetothe‘realworld’values.AnalyticalcasesusingpowerflowcomputationsfromstandardIEEE5bus,14buscases,etc.,thencorruptingthelineparametersandflowsbyrandomnoise,havebeenusedinordertoobtaintestthealgorithm.However,thisanalyticalprocessdoesnotmatch‘realworld’data.A‘realworld’casetoverifytheparameterestimationalgorithmisasfollows.Parametersfortransformersareperhapsthebestknownoflargepowerhandlingelementsbecauseofmeasurementsperformedbythemanufacturer.The3paralleltransformersanda4thseriestransformershowninfigure6a,hadtheSCADAsnapshotmeasurementsshowninfigure6b.Fig.6aParallelandSeriesTransformersFig.6bSCADAMeasuredFlowsfortheParallelandSeriesTransformersTheparameterestimationprogramappliedtothedataoffigure6bresultedinthevaluesshowninfigure7.ThereisexactagreementofestimatedanddatabasereactancefortransformerTABK63,andsomedifferenceinresistance.TheestimatedparametersforTABK62matchthedatabasevaluesforTABK60,andtheestimatedvaluesforTABK60matchthedatabasevaluesforTABK62.ThesetwoanalysisdiscrepancieswereresolvedwhentheutilitydiscoveredTABK62andTABK60hadtheirfieldinstrumentationwiresswitchedattheremote-terminalunit(RTU).AmoreextensiveverificationoftheparameterestimationmethodwasobtainedinverycloselycontrolledlaboratorytestbedexperimentsconductedatNASAGlennResearchCenter[7].Thesetests,performedonbothradialandloopnetworks,consideredatransmissionlinefaulttobeanychangeinthetransmissionlinetestbedvaluecomparedtothepre-testorcalibrateddatabasevalue.Inthelaboratorytests,discretephysicalresistorswereaddedasseriesorline-to-groundcomponentsinthetestbed,andtheparameterestimationprogramwasrequiredtodetectthealteredlinefromadatasnapshot.Thetestsfoundthedeliberateerrorintroducedinatransmissionline100%ofthetimeoverwiderangesofnetworkoperatingconditions.Thetestsdemonstratedthelimitofthetransmissionlineparameterestimationprogramisthecapabilitytoestimatelineswithresidualsabovethethresholdof‘noise’duetomeasurementandothertransmissionlineerrorsinthenetwork.Forthepowersystemcaseshowninfigures3,4,and5,only2of3transmissionlinescouldbeestimated.Forthetransformercaseinfigures6a,6b,andfigure7,only3of4transformerscouldbeparameterestimatedbeforethealgorithmbecamelimitedby‘noise’.Fig.7DatabaseandParameterEstimationsforaTransformerGroup(TABK62andTABK60switchedinthefield)V.ALARGENETWORKTESTCASEThe19bus,42line,2transformernetworkshowninfigure8hadaSCADAsnapshotofonlytransmissionlineflowsandvoltageswithwhichtoperformtheparameterestimation.Inthefigure,thebusnumbersareincircles.Often2or4transmissionlinesareinparallelfrombus-to-bus.TheSCADAdatasnapshotforfigure8consistedof170measurementsoflineflowsplusvoltages.AportionoftheSCADAdataispresentedinfigure9.The170SCADAmeasurementswereusedtocomputethestateestimateFromtheStateEstimatorresiduals,theworstfitofestimatedparameterstodatabasevalueswasforthetransmissionlinebetweenbus#8and#16,followedbytheparallellinesbetweenbus#6andbus#8,etc.,intheorderpresentedinfigure9.Valuesofestimatedtransmissionlineparametersarepresentedinfigure10forlinesthatcouldbeestimatedbefore‘noise’limitedFigure8TestNetworkof19BussesFig.9SCADADataforPartofFigure8(p.u.,100MVABase)Fig.10EstimatedLineParametersfor9Linesfromthe19BusNetwork(Figure8)Acomparisonoffigure10estimatedparametersagainstthefigure9databasevaluesshows50%to400%differencesinlinecharging.Estimatedresistancecomparedtodatabaseresistancevariesfromcloseagreementto300%difference.Thelinesbetweenbus#15andbus#6show300%differenceinreactancesestimatedcomparedtodatabase.Thesearesignificantdifferences.BymatchinglineterminationP,Q,Vinaoneline,twobuspowerflow,thecalculationshowsestimatedlinesareacloserfittoSCADAflows.AStateEstimatorcomputationforthe19bustopologyoffigure8withdatabaselineparametershad50pointsofnormalizedresiduals>.00005but<=.0003,andnopointshigher.Thesamesnapshotwithestimatedtransmissionlineparametershadonly28pointsinthissamerange.Thisisamuchcloser‘fit’ofcalculationstomeasurements.VI.CONCLUDINGREMARKSTheparameterestimationmethodwasverifiedbyseveralfieldtests,simplecomputations,andinlaboratoryexperiments.Physicalchecks,suchasSCADAmeasurementsonopen-endexcitationoftransmissionlines,shouldbeusedbyutilitiestomeasurelinecapacitancewhenalineisrestoredtoservice.SCADA-basedestimatesaremoreaccuratethantheoreticaldatabaseparameters.Thepropertyofparameterestimation,aseventuallylimitedby‘noise’inmeasurementsandothertransmissionlineerrors,forcesthealgorithmtobeappliedtoonly15to30busportionsoflargernetworks.Analysisisperformeduntilthealgorithmbecomeslimited,thenthetestareaismovedtoanewportionofthelargernetwork.VII.REFERENCES[1]Wood,A.J.,andWollenberg,B.F.“PowerGeneration,Operation,andControl”,text,J.Wiley,1996,ISBN0-47158699-4[2]Debs,A.,“ParameterEstimationforPowerSystemsintheSteady-State”,IEEETrans.Power,Vol.19,#6,Dec.1974[3]Wu,F.F.,“DetectionofTopologyErrorsbyStateEstimation”,IEEEPESWinterMeeting,1988[4]Liu,W-H.,E.,Wu,F.F.,andLun,S-M,“ObservabilityAnalysisandBadDataprocessingforStateEstimationwithEqualityConstraints”,IEEETrans.Pow.Sys.,Vol.PWRS-3,May1988[5]Liu,W-H.,E.,Wu,F.F.,andLun,S-M.,“EstimationofParameterErrorsfromMeasurementResidualsinStateEstimation”,Trans.Pow.Sys.,Vol.7,No.1,Feb1992[6]Zarco,P.andExposito,A.G.,“PowerSystemParameterEstimation:ASurvey”,IEEETrans.Pow.Sys.,Vol15,No.1,Feb,2000[7]Kusic,G.L.,“ExperimentalTestsonPowerSystemMonitoringandFaultDetection”,reporttoNASAGlennresearchCenterfromPowerSystemsConsultants,Inc,Dec24,2002Dr.GeorgeKusic,M1953,receivedhisBSEE(1957),MSEE(1964),andPh.DEE(1968)fromCarnegie-MellonUniversity.Sincehereceivedhisdoctorate,hehasbeenafacultymemberoftheDepartmentofElectricalEngineeringattheUniversityofPittsburgh.Hisareasofinterestarethepowerfieldandelectronics.Dr.KusichasnumerousIEEEpublicationsinthepowerfieldandistheauthorofatextbook,“Computer-AidedPowerSystemAnalysis”,byPrentiss-Hall.In1981Dr.KusicfoundedPowerSystemsConsultantstoprovideelectricalengineeringconsultingtovariousfirms,utilities,andgovernmentalagencies.Amongthefirm’sclientsareWestinghouseElectric,IBM,Commonwealth-Edison,AdvancedControlSystems,andNASA.ForNASA,Dr.KusicinitiatedtheuseofStateEstimationandpowerflowmethodsontheInternationalSpaceStation.Formanufacturers,Dr.Kusichaswritten,installed,andfield-testedmanysoftwareprogramsforEnergyManagementSystems(EMS).Dr.Kusicalsohasusedhiselectronicsbackgroundtodevelopuniqueinstrumentationforpowersystemmeasurements.DavidL.GarrisonreceivedhisBSEE(1971)andMEEE(1976),fromClemsonUniversity.Hehas30yearsengineeringexperience,firstwithSanteeCooperasatransmissionplannerfor8yearsandcurrentlywithDukeEnergywithDukeEnergyfor22yearsinitstransmissionplanningandoperatingareas.

譯文:基于SCADA數(shù)據(jù)庫(kù)參數(shù)估計(jì)進(jìn)行傳輸線(xiàn)測(cè)量G.L庫(kù)斯科和D.L.加里森摘要——由SCADA系統(tǒng)的測(cè)量值看來(lái),傳輸線(xiàn)的等效電路參數(shù)通常有25%到30%的誤差比。這些錯(cuò)誤導(dǎo)致了經(jīng)濟(jì)調(diào)度是錯(cuò)誤的,并導(dǎo)致成本增加或不正確的計(jì)費(fèi)。參數(shù)誤差也影響事故分析,短路分析,距離保護(hù),整機(jī)穩(wěn)定性計(jì)算,輸電規(guī)劃,和狀態(tài)估計(jì)分析。具一個(gè)經(jīng)濟(jì)上的例子來(lái)證明傳輸線(xiàn)誤差的影響,從幾家公用事業(yè)公司的SCADA測(cè)量用于計(jì)算傳輸線(xiàn)參數(shù)的“現(xiàn)實(shí)”的值。與估計(jì)的參數(shù)與使用理論值比值的計(jì)算。關(guān)鍵詞:SCADA測(cè)量,狀態(tài)估計(jì),線(xiàn)路參數(shù)估計(jì)一、引言在大多數(shù)情況下,公用事業(yè)企業(yè)的理論值線(xiàn)參數(shù)的理想幾何線(xiàn)如導(dǎo)體上方平高度計(jì)算,恒電阻接地。地電阻率隨地形可變。在丘陵地形中導(dǎo)線(xiàn)弧垂的影響是無(wú)法估計(jì)的。通常屏蔽線(xiàn)在每個(gè)塔接地以代替浮在整個(gè)線(xiàn)路長(zhǎng)度。線(xiàn)路電阻隨電流、環(huán)境溫度和風(fēng)速的影響。一個(gè)斷供期需要測(cè)量線(xiàn)路充電電容,只有片面的激勵(lì)不在開(kāi)路端電壓上升的原因太多了。與平行線(xiàn)相互耦合的新建筑,影響舊的數(shù)據(jù)庫(kù)值。很少測(cè)量傳輸線(xiàn)的串聯(lián)電抗器,因此使用的值是一個(gè)理想的換位線(xiàn)。線(xiàn)路不換位,因?yàn)樵黾恿耸┕こ杀镜臋C(jī)械會(huì)改變導(dǎo)線(xiàn)相對(duì)于支撐桿每1/3的距離的位置。所有這些變化從理想的條件,和一些實(shí)際測(cè)量,公用事業(yè)通常有25%到30%的錯(cuò)誤在他們的數(shù)據(jù)庫(kù)中的參數(shù)相比于“現(xiàn)實(shí)”的值一樣。

公用事業(yè)使用有功功率和無(wú)功功率計(jì)量收入。傳輸線(xiàn)損耗通常小于3%的總代。然而,從理論的數(shù)據(jù)庫(kù)行參數(shù)來(lái)計(jì)算損失系數(shù),或用機(jī)組的調(diào)度點(diǎn)(輸出功率)確定增量損失的因素。如果線(xiàn)路參數(shù)重新分配電力發(fā)電機(jī)的精確值,并減少0.1%的傳輸損耗,這將轉(zhuǎn)化為巨大的能量積蓄在電力系統(tǒng)運(yùn)行。例如,在0.1%時(shí)的儲(chǔ)蓄,大量的電力傳輸在10000瓦左右,負(fù)荷率0.6,達(dá)到20美元/百萬(wàn)英熱單位和10.5密耳率的燃料,每年在美國(guó)東部電力可以節(jié)省11000000美元。監(jiān)測(cè)電力系統(tǒng)的狀態(tài)是在中央控制中心的計(jì)算機(jī)系統(tǒng)的一個(gè)主要的安全功能(調(diào)度中心)的事業(yè)。對(duì)電力系統(tǒng)的控制線(xiàn)路、母線(xiàn)電壓和功率流在每2秒級(jí)監(jiān)測(cè)。如果測(cè)量數(shù)據(jù)超出安全操作的容忍限度,警報(bào)產(chǎn)生必須“清除”,由調(diào)度員通過(guò)切換線(xiàn)路補(bǔ)償電容器、并聯(lián)電抗器等,調(diào)節(jié)可變抽頭變壓器,發(fā)電機(jī)的輸出或轉(zhuǎn)移等,調(diào)度員可以根據(jù)可靠和完整的信息,通過(guò)電壓和功率流的測(cè)量狀態(tài)估計(jì)檢測(cè)故障的測(cè)量傳感器(壞數(shù)據(jù)處理)和“填補(bǔ)”失去了遠(yuǎn)程終端的單元(RTU測(cè)量時(shí)有中斷信號(hào))。狀態(tài)估計(jì)的計(jì)算基于傳輸線(xiàn)參數(shù)的理論值。估計(jì)器的性能是在輸電線(xiàn)路參數(shù)的理論值誤差極限狀態(tài)檢測(cè)不良數(shù)據(jù),并使其無(wú)效的監(jiān)視工具。隨著傳輸線(xiàn)的誤差,標(biāo)準(zhǔn)化殘差大于應(yīng)該他們。至少一個(gè)效用調(diào)整線(xiàn)的參數(shù)數(shù)據(jù)庫(kù)與現(xiàn)實(shí)的輸電線(xiàn)路可以提高狀態(tài)計(jì)算。在圖1中,所有的節(jié)點(diǎn)邊際電價(jià)(LMP)投標(biāo)發(fā)電,600兆瓦@10美元/兆瓦時(shí)在總線(xiàn)完全利用之前采用的69兆瓦的總線(xiàn)。結(jié)果這個(gè)調(diào)度的傳輸線(xiàn)流動(dòng)在如圖所示。營(yíng)業(yè)總成本是6966美元/小時(shí)。圖1利用現(xiàn)有發(fā)電成本最低的669兆瓦負(fù)荷經(jīng)濟(jì)調(diào)度對(duì)系統(tǒng)的負(fù)載均勻地增加到300兆瓦的總線(xiàn)B,C,D,LMP調(diào)度會(huì)嘗試使用所有的210兆瓦的廉價(jià)電力(110兆瓦@14美元/兆瓦和100兆瓦@15美元/兆瓦時(shí))在總線(xiàn)前90兆瓦的30美元/兆瓦時(shí)在總線(xiàn)D電力應(yīng)用。總成本是11740美元/小時(shí)。然而,當(dāng)210兆瓦是派出總線(xiàn)時(shí),這個(gè)結(jié)果在網(wǎng)上給違反約束的243兆瓦的供流。因此,在總線(xiàn)利用124兆瓦的總線(xiàn)D只需要166兆瓦電力這么便宜。由于約束,總運(yùn)營(yíng)成本增加12100美元/小時(shí)。調(diào)度圖1a所示。如果傳輸線(xiàn)ED具有固定=1.25*“現(xiàn)實(shí)”的電抗。0297,或者說(shuō)有一個(gè)測(cè)量25%電抗比數(shù)據(jù)庫(kù),900兆瓦負(fù)荷調(diào)度利用所有的低成本電力因?yàn)槌绷鞑贿`反E-D線(xiàn)約束。在這種情況下,如圖2所示的輸電線(xiàn)路功率流。調(diào)度的總成本是11740美元/小時(shí)。如圖1所示的例子是一位美國(guó)東部電網(wǎng)用來(lái)演示線(xiàn)流動(dòng)的限制。圖2顯示了功率流與正確的線(xiàn)路參數(shù)計(jì)算有明顯的不同,在經(jīng)濟(jì)差異大的點(diǎn)。修正很少用傳輸線(xiàn)參數(shù)以匹配測(cè)量的線(xiàn)流,由于測(cè)量誤差的來(lái)源是未知的。一個(gè)實(shí)用的也很難更改數(shù)據(jù)庫(kù)中的參數(shù)太多不同群體的效用,例如,規(guī)劃,保護(hù),安全,等,必須改變其值或設(shè)置現(xiàn)場(chǎng)設(shè)備。圖1A900兆瓦負(fù)荷經(jīng)濟(jì)調(diào)度的在線(xiàn)版的約束限制二、輸電線(xiàn)路參數(shù)估計(jì)短至中等長(zhǎng)度,比60赫茲波,三相輸電線(xiàn)路等值的PI從理想的幾何形狀和平衡相的條件下操作的計(jì)算模型。在線(xiàn)路終端電壓幅值的相位測(cè)量值的平均值,通常獲得1%到2%的準(zhǔn)確性的降壓變壓器的測(cè)量。圖2900兆瓦負(fù)荷經(jīng)濟(jì)調(diào)度和XED=1.25*0297輸電線(xiàn)路電抗(無(wú)線(xiàn)約束違反)等效PI的有功和無(wú)功潮流是一筆流動(dòng)的3個(gè)階段,得到1%的瞬時(shí)產(chǎn)品2%與電壓測(cè)量精確的電流測(cè)量。忽略在傳感器和計(jì)算機(jī)數(shù)值貢獻(xiàn)較小字長(zhǎng)的A/D轉(zhuǎn)換器,功率流的整體測(cè)量精度也在1%到2%。用于11a的圖3所示的總線(xiàn)網(wǎng)絡(luò)提供了一個(gè)系統(tǒng)的“快照”的潮流和電壓測(cè)量圖的東電池。“快照”給出的數(shù)據(jù)在圖4中。多注意真正的力量來(lái)自于進(jìn)線(xiàn)L1(S1和S2)它,但這種異常是由于測(cè)量誤差為實(shí)際功率差2%的絕對(duì)值。“快照”是狀態(tài)估計(jì)幾乎同步的測(cè)量的術(shù)語(yǔ),因?yàn)槎虝r(shí)間間隔(毫秒)的存在,從最初的測(cè)量到最終的測(cè)量一個(gè)緩慢變化的負(fù)荷/發(fā)電。圖3監(jiān)控測(cè)點(diǎn)在3總線(xiàn)網(wǎng)絡(luò)狀態(tài)估計(jì)計(jì)算的平滑的數(shù)據(jù),檢測(cè)到壞的傳感器,并計(jì)算出電壓和相位角的最佳估計(jì)在總線(xiàn)的網(wǎng)絡(luò),例如,網(wǎng)絡(luò)的“狀態(tài)”。計(jì)算出的狀態(tài)是一個(gè)加權(quán)最小二乘估計(jì)“最適合的”使用該等效傳輸線(xiàn)參數(shù)數(shù)據(jù)庫(kù)的值的測(cè)量,R+JX系列的標(biāo)幺值阻抗元件–JY/2分流普納線(xiàn)的兩端。分析方法存在“與狀態(tài)估計(jì)相結(jié)合的快照估計(jì)線(xiàn)路參數(shù)。第一次這樣的狀態(tài)估計(jì)方法[2]開(kāi)始后不久出現(xiàn)。許多貢獻(xiàn)了大約1990的[3,4]是典型的,新技術(shù)的不斷發(fā)展[5]。最近的一個(gè)總結(jié),參考[6]。圖4中的數(shù)據(jù)的“快照”是用來(lái)傳播的狀態(tài)估計(jì)[5]和最“適合”的在線(xiàn)查找相關(guān)殘差法估算圖3傳輸線(xiàn)參數(shù)。用這個(gè)方法的參數(shù)估計(jì)結(jié)果如圖5所示。圖4監(jiān)控測(cè)量圖3圖5傳輸線(xiàn)參數(shù)估計(jì)結(jié)果與圖4圖3網(wǎng)絡(luò)SCADA數(shù)據(jù)只有圖2的線(xiàn)路圖在3的網(wǎng)絡(luò)中可以淹沒(méi)殘余誤差,進(jìn)一步檢測(cè)估計(jì)線(xiàn)BC和AB25%誤差線(xiàn)充電電

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論